World Journal of Chemical Education. 2021, 9(4), 163-174
DOI: 10.12691/WJCE-9-4-9
Special Issue

Diversity with Light: Photoreaction Pathways and Products of Butyrophenone

Heiko Hoffmann1, and Michael W. Tausch2

1Faculty of Natural Sciences and Technology, Provadis Hochschule, Industriepark Höchst, Gebäude B835, 65926, Frankfurt am Main, Germany

2Faculty of Mathematics and Natural Sciences, Bergische Universität Wuppertal, Gebäude V.11.027, Gaußstraße 20, 42119 Wuppertal, Germany

Pub. Date: November 28, 2021
(This article belongs to the Special Issue Photoprocesses in Chemical Education)

Cite this paper

Heiko Hoffmann and Michael W. Tausch. Diversity with Light: Photoreaction Pathways and Products of Butyrophenone. World Journal of Chemical Education. 2021; 9(4):163-174. doi: 10.12691/WJCE-9-4-9


Photochemistry is an important topic which is relevant regarding the usage of solar light as clean energy source. By employing photoreactions, a broad variety of molecular transformations can be conducted which is different from classical thermal chemistry. Ketones provide advantages and thus can be used as model compounds to develop central aspects and principles of photochemistry for teaching purposes. A photochemical experiment for university teaching, dealing with the basic reaction modes of ketones with γ-C-H-bonds, can be introduced and adjusted to the learners capability and pre-knowledge. Different basic characteristics of photochemistry and radical reactions as well as advanced topics and working techniques can be accessed in a hands-on-way using the model reaction. Depending on the equipment and the time frame available, the experiment can be conducted on preparative or on micro scale.


ketones, photochemistry, H-atom transfer, radical reactions, hands-on laboratory learning


Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Hoffmann, N. (2017) Proton-Coupled Electron Transfer in Photoredox Catalytic Reactions. Eur. J. Org. Chem., 2017 (15), 1982-1992.
[2]  Dantas, J.A., J. T. M. Correia, Paixão, M.W., Corrêa, A.G. (2019) Photochemistry of Carbonyl Compounds: Application in Metal-Free Reactions. ChemPhotoChem, 3 (7), 506-520.
[3]  Cambié, D. and Noël, T. (2018) Solar Photochemistry in Flow. Top Curr Chem (Z), 376 (45).
[4]  Klán, P. and Wirz, J. (2010) Photochemistry of organic compounds: From concepts to practice, J. Wiley & Sons, Chichester.
[5]  König, B. - Organic Photochemistry. (27 June 2021).
[6]  Braun, A.M., Oliveros, E., Maurette, M.-T. (1991). Photochemical technology, John Wiley, Chichester.
[7]  Mattay, J. and Griesbeck, A. (eds) (1994) Photochemical Key Steps in Organic Synthesis: An Experimental Course Book, Wiley-VCH, Weinheim, New York.
[8]  Tausch, M.W. (2015) Mehr Licht! Auch im Chemieunterricht! CHEMKON, 22 (4), 161.
[9]  Tausch, M. (2019) Chemie mit Licht, Springer, Berlin, Heidelberg.
[10]  Tausch, M. and Wachtendonk, M.v. (2007) Chemie 2000+Sek II: Stoffe – Reaktionen – Kreisläufe, C. C. Buchners Verlag, Bamberg.
[11]  Wöhrle, D., Tausch, M.W., Stohrer, W.-D. (1998) Photochemie: Konzepte, Methoden, Experimente, Wiley-VCH, Weinheim.
[12]  Turro, N.J., Ramamurthy, V., Scaiano, J.C. (2010) Modern molecular photochemistry of organic molecules, University Science Books, Sausalito.
[13]  Tausch, M.W. and Balzer, M. (1998) Die Ketone und das Licht. Prax. Naturwiss. Chem., 47 (4), 14-20.
[14]  Marciniak, B. (1988) Photochemistry of phenyl alkyl ketones: The “Norrish type II” photoreaction: An organic photochemistry experiment. J. Chem. Educ., 65 (9), 832-834.
[15]  Hoffmann, H. (2020) Photochemie der Ketone: Experimente und Konzepte für die Lehre sowie die Untersuchung der photochemischen Bildung von 1,2-Dibenzoylethan aus Butyrophenon, Dissertation, Bergische Universität Wuppertal.
[16]  Hoffmann, H. and Tausch, M.W. (2021) Intermolecular Photoredox Coupling: Alternative to Norrish Type II Reaction and Yang Cyclization in Ketones with γ-C-H Bonds. Eur. J. Org. Chem. (early view).
[17]  Barltrop, J.A. and Coyle, J.D. (1968) Organic photochemistry. IX. Intramolecular photoreactions of simple gamma- and para-substituted butyrophenones. J. Am. Chem. Soc., 90 (24), 6584-6588.
[18]  Baum, E.J., Wan, J. K. S., Pitts, J.N. (1966) Reactivity of Excited States. Intramolecular Hydrogen Atom Abstraction in Substituted Butyrophenones. J. Am. Chem. Soc., 88 (12), 2652-2659.
[19]  Haspra, P., Sutter, A., Wirz, J. (1979) Acidity of Acetophenone Enol in Aqueous Solution. Angew. Chem. Int. Ed., 18 (8), 617-619.
[20]  Haag, R., Wirz, J., Wagner, P.J. (1977). The Photoenolization of 2-Methylacetophenone and Related Compounds. Helv. Chim. Acta, 60 (8), 2595-2607.
[21]  Wagner, P.J. (1971) Type II photoelimination and photocyclization of ketones. Acc. Chem. Res., 4 (5), 168-177.
[22]  Wagner, P.J. (1967) Polar solvent enhancement of the quantum efficiency of type II photoelimisation. Tetrahedron Lett., 8 (18), 1753-1756.
[23]  Wagner, P.J. and Hammond, G.S. (1966) Mechanisms of Photochemical Reactions in Solution. XXXVIII. Quenching of the Type II Photoelimination Reaction. J. Am. Chem. Soc., 88 (6), 1245-1251.
[24]  Chiang, Y. and Kresge, A.J. (1991) Enols and Other Reactive Species. Science, 253 (5018), 395-400.
[25]  Sundaresan, A.K., Jockusch, S., Turro, N.J. (2011) Photochemistry of 2-diphenylmethoxyacetophenone. Direct detection of a long-lived enol from a Norrish Type II photoreaction. Photochem. Photobiol. Sci., 10 (9), 1450-1454.
[26]  Chiang, Y., Kresge, A.J., Santaballa, J.A., Wirz, J. (1988) Ketonization of acetophenone enol in aqueous buffer solutions. Rate-equilibrium relations and mechanism of the uncatalyzed reaction. J. Am. Chem. Soc., 110 (16), 5506-5510.
[27]  Brown, W.G. (1966) Triplet participation in the radiolytic Type II cleavage of n-butyrophenone. Chem. Commun. (7), 195-197.
[28]  LaCount, R.B. and Griffin, C.E. (1965). Formation of diastereoisomeric cyclobutanols and 3-oxetanols by photocyclization of phenyl ketones. Tetrahedron Lett., 6 (21), 1549-1552.
[29]  Becker, H.-D. (1967) Photochemical Reactions with Phenols. V. The Photochemical Oxidative-Reductive Dimerization of Acetophenones. J. Org. Chem., 32 (7), 2140-2144.
[30]  Renaud, J. and Scaiano, J.C. (1996) Hydrogen vs. electron transfer mechanisms in the chain decomposition of phenacyl bromides. Use of isotopic labeling as a mechanistic probe. Can. J. Chem., 74 (9), 1724-1730.
[31]  Veetil, A.T., Šolomek, T., Ngoy, B.P., Pavlíková, N., Heger, D., Klán, P. (2011). Photochemistry of S-Phenacyl Xanthates. J. Org. Chem., 76 (20), 8232-8242.
[32]  Demeter, A., Horváth, K., Böőr, K., Molnár, L., Soós, T., Lendvay, G. (2013). Substituent Effect on the Photoreduction Kinetics of Benzophenone. J. Phys. Chem. A, 117 (40), 10196-10210.
[33]  Xuan, J., Feng, Z.-J., Chen, J.-R., Lu, L.-Q., Xiao, W.-J. (2014). Visible-Light-Induced C-S Bond Activation: Facile Access to 1,4-Diketones from β-Ketosulfones. Chem. Eur. J., 20 (11), 3045-3049.
[34]  Matsuura, T. and Kitaura, Y. (1968). Photo-induced Reactions. XIX. Photopinacolization of Unsymmetric Aromatic Ketones. Bull. Chem. Soc. Jpn., 41 (10), 2483-2485.
[35]  Fleming, I. (2012). Molekülorbitale und Reaktionen organischer Verbindungen, Wiley-VCH, Weinheim.
[36]  Chiang, Y., Kresge, A.J., Wirz, J. (1984). Flash-photolytic generation of acetophenone enol. The keto-enol equilibrium constant and pKa of acetophenone in aqueous solution. J. Am. Chem. Soc., 106 (21), 6392-6395.
[37]  Chiang, Y., Kresge, A.J., Capponi, M., Wirz, J. (1986). Direct Observation of Acetophenone Enol Formed by Photohydration of Phenylacetylene. Helv. Chim. Acta, 69 (6), 1331-1332.
[38]  Hoffmann, H. and Tausch, M.W. (2016). Modellreaktionen mit Sonnenlicht oder Taschenlampe. Nachr. Chem., 64 (11), 1090-1093.
[39]  Hoffmann, H. and Tausch, M.W. (2018). Low-Cost Equipment for Photochemical Reactions. J. Chem. Educ., 95 (12), 2289-2292.
[40]  Sahlmann, B. - Sahlmann Photochemical Solutions. (27 June 2021).
[41]  Casey, M., Leonard, J., Lygo, B., Procter, G. (1990) Advanced Practical Organic Chemistry, Springer, Boston, MA.
[42]  Pirrung, M.C. (2007). The synthetic organic chemist's companion, Wiley-Interscience, Hoboken.
[43]  Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA), Sankt Augustin - GESTIS-Stoffdatenbank. Gefahrstoffinformationssystem der Deutschen Gesetzlichen Unfallversicherung. (27 June 2021).
[44]  Merck, supplier. (27 June 2021).
[45]  TCI Chemicals, supplier. (27 June 2021).
[46]  National Institute of Advanced Industrial Science and Technology - Spectral Database for Organic Compounds (SDBS). (27 June 2021).
[47]  Alberts, V. and Carman, R.M. (1980). The reaction of propene with iodine bromide. Aust. J. Chem., 33 (2), 455.
[48]  Solomon, S., Fulep-Poszmik, A., Kulp, G., Yu, H. (1992) Addition of IBr to fatty acids on the overhead projector. J. Chem. Educ., 69 (1), 66.
[49]  Holde, D. and Gorgas, A. (1925) Über Additionsprodukte von Jodmonobromid und unterjodiger Säure an ungesättigte Körper (I). Ber. dtsch. Chem. Ges. A/B, 58 (6), 1071-1074.
[50]  Fiebig, H.-J. (1991) Ergebnisse von Ringversuchen zur Bestimmung der Iodzahl. Fett Wiss. Technol., 93 (1), 13-19.
[51]  Peppe, C. and Pavão das Chagas, R. (2004) Indium(I) Bromide-Mediated Reductive Coupling of α,α-Dichloroketones to 1-Aryl-butane-1,4-diones. Synlett (7), 1187-1190.
[52]  Alpha Aesar, supplier. (27 June 2021).
[53]  Reiners, C.S. (2017). Chemie vermitteln, Springer, Berlin, Heidelberg.
[54]  Arnold, J., Kremer, K., Mayer, J. (2017). Scaffolding beim Forschenden Lernen. ZfDN, 23 (1), 21-37.
[55]  Mieg, H.A. and Lehmann, J. (2017) Forschendes Lernen: Wie die Lehre in Universität und Fachhochschule erneuert werden kann, Campus Verlag, Frankfurt, New York,
[56]  Reitinger, J. (2014). Forschendes Lernen: Theorie, Evaluation und Praxis in naturwissenschaftlichen Lernarrangements, Prolog-Verlag, Immenhausen.
[57]  Peppe, C. and Pavão das Chagas, R. (2004) Indium(I) Bromide-Mediated Reductive Coupling of α,α-Dichloroketones to 1-Aryl-butane-1,4-diones. Synlett (7), 1187-1190.
[58]  Kwan, E.E. and Huang, S.G. (2008) Structural Elucidation with NMR Spectroscopy: Practical Strategies for Organic Chemists. Eur. J. Org. Chem. (16), 2671-2688.
[59]  Hoffmann, H. and Tausch, M.W. (2021) Intermolecular Photoredox Coupling: Alternative to Norrish Type II Reaction and Yang Cyclization in Ketones with γ-C-H Bonds. Eur. J. Org. Chem., early view.