Volume 9, Issue 1

Adsorptive Accumulation of Methylene Blue Dye from Aqueous Effluent by NiFe2O4-GO Nano-adsorbent
Original Research
In this article, the Methylene Blue dye adsorption is studied using NiFe2O4-Graphene Oxide composite as adsorbent. The NiFe2O4-graphene oxide (NiFe2O4-GO) nano-composite made by single step solvothermal approach. The characterization study revealed the abundance of functional group and nanomaterial features in prepared material. The MB adsorption is increased with rising adsorbent doses, pH, temperature and initial MB solution concentrations. Pseudo second order kinetic model got fitted by adsorption kinetics. As compared to BET, Temkin, Freundlich and Dubinin-Radushkevich model, Langmuir model is suitable for adsorption isotherm. Thermodynamic studies suggest adsorption process’s endothermic nature and spontaneity. The adsorption advances through π-π interaction, H-bonding and electrostatic attraction. Reusability study reveals the prepared adsorbent is a promising as well as cost effective sorbent for high efficiency and excellent renewability.
World Journal of Chemical Education. 2021, 9(1), 28-41. DOI: 10.12691/wjce-9-1-5
Pub. Date: March 26, 2021
6461 Views3 Downloads
Biological Models to Study Reaction Kinetic Mechanisms
Original Research
Our goal is to show how modeling of the dynamics of biological behavior in a system of living organisms illustrates the kinetics of molecular reactions. The experiments presented here include real-life modeling of the movement of fish in an aquarium tank and passage of fruit flies through a hole in a chamber. The use of these models also shows, by quantifying the movement of constituents in a system, that an equilibrium reaction is not static system. Rather, it is a dynamic system involving two reactions - a forward reaction and a backward reaction between reactants and products that are fluctuating to and fro in concentration. The results show that modeling behavior of fish represents equilibrium in 3D space while modeling movement of fruit flies characterizes an equilibrium in 2D space. The models also illustrate how biological systems can be used to derive rate constant values and energy of activation for rates of a reaction. Finally, our study illustrates how modeling the dynamics of biological systems provides students with an enhanced understanding of the concepts in chemistry and physics that describe the fundamental kinetic nature of our world.
World Journal of Chemical Education. 2021, 9(1), 22-27. DOI: 10.12691/wjce-9-1-4
Pub. Date: January 29, 2021
3895 Views12 Downloads
Fundamentals and Applications of Electrochemical Impedance Spectroscopy - A Didactic Perspective
Original Research
Two experiments are presented to introduce students to the utility of electrochemical impedance spectroscopy (EIS) in finding electrodes suitable for applications such as battery development. We used different metal and carbon nanotube (CNT) screen-printed electrodes (SPEs) and compared EIS with cyclic voltammetry (CV) curves. In addition, we prepared the SPEs with graphene powder to show the different behaviour of modified and unmodified SPEs with CV and EIS.
World Journal of Chemical Education. 2021, 9(1), 14-21. DOI: 10.12691/wjce-9-1-3
Pub. Date: December 27, 2020
9286 Views13 Downloads
Application of Quantitative Proton Nuclear Magnetic Resonance Spectroscopy for the Compositional Analysis of Short-Chain Fatty Acid Ethyl Ester Mixtures
Original Research
Nuclear magnetic resonance spectroscopy (NMR) is a widely used, powerful, and perhaps one of the most important instrumental techniques to qualitatively determine the molecular structure of an analyte. Using proton NMR in quantitative applications, also known as qNMR, is, however, uncommon, particularly in quantifying analytes within a mixture. To increase exposure to both qualitative and quantitative aspects of NMR in an undergraduate chemistry laboratory curriculum, we have developed a straightforward qNMR experiment suitable for adaptation into analytical and instrumental chemistry courses. The objective of this experiment is to determine the weight percent composition of a binary mixture containing short-chain fatty acid ethyl esters. We report on the methodologies used to determine the weight percent composition of ethyl acetate (EtAc), ethyl propionate (EtPr), and ethyl butyrate (EtBu) with mixtures ranging from 0% to 100%. The results demonstrate a strong, linear correlation of the weight percent composition of a selected component in a binary mixture found using proton qNMR with the theoretical compositions calculated gravimetrically. The experiment demonstrates the quantitative utility of proton NMR and serves as an educational tool for the undergraduate chemical laboratory.
World Journal of Chemical Education. 2021, 9(1), 8-13. DOI: 10.12691/wjce-9-1-2
Pub. Date: November 20, 2020
5097 Views161 Downloads
Possibilities of Learning Contemporary Chemistry via Virtual Reality
Review Article
The fundamental challenge for understanding and thus for teaching chemistry is that chemical processes at the atomic level are all inaccessible to sensory experience and must therefore be represented by models. For learners these models are often difficult to understand and to use, as they pose high demands regarding cognitive and spatial ability as well as abstraction. This applies especially when it comes to current developments and research topics of chemistry, like nanoscience. It leads to a situation where modern chemistry and chemical research is more and more inaccessible for learners at universities. Using learning environments that utilize virtual reality may help to overcome this problematic situation as they allow new ways of visualization, a more direct interaction between learner and chemical object and they are open to more game-based approaches. By using VR-technology in combination with aspects of actual chemical research topics, chemistry education students may gain better understanding of modern chemistry. As a result, they should be better prepared to realize modern chemistry lessons in the future, that delivers a realistic view of modern chemistry, cover topics of actual relevance and use digital methods that foster learning. In the following, two projects which focus on VR and contemporary chemistry will be presented. In the first project a virtual reality game was created and embedded in a course of chemistry education. The aim is to present the students a kind of real situation with aspects of modern chemistry, where they have to act as a forensic scientist. Additionally, they should use this VR game as basis for conceptualizing teaching materials for chemistry lessons at school and as a means to promote their digital competencies. In the second project, another context and software for learning contemporary chemical contents via VR is used. Students focus on chemical aspects of the Corona-Virus (Sars-CoV-2) as content and use the VR-software nanome for learning about complex molecular systems and making these chemical aspects teachable afterwards.
World Journal of Chemical Education. 2021, 9(1), 1-7. DOI: 10.12691/wjce-9-1-1
Pub. Date: November 17, 2020
3835 Views209 Downloads1 Likes