World Journal of Chemical Education. 2022, 10(2), 51-61
DOI: 10.12691/WJCE-10-2-1
Original Research

NMR Deconvolution: Quantitative Profiling of Isomeric Mixtures

Lauren S. Lopansri1, Jacob N. Letson1, Richard A. O’Brien1, David R. Battiste1 and David C. Forbes1,

1Department of Chemistry, University of South Alabama, Mobile, AL 36688, USA

Pub. Date: March 11, 2022

Cite this paper

Lauren S. Lopansri, Jacob N. Letson, Richard A. O’Brien, David R. Battiste and David C. Forbes. NMR Deconvolution: Quantitative Profiling of Isomeric Mixtures. World Journal of Chemical Education. 2022; 10(2):51-61. doi: 10.12691/WJCE-10-2-1

Abstract

A method involving NMR band deconvolution has been applied to the instructional/research activities at the undergraduate level. Three case studies are presented to illustrate how unresolved peaks of 1H and 13C NMR spectra can used to obtain quantitative data on isomeric composition. The data generation is rapid and the method can be applied to any organic chemistry laboratory curriculum/research program involving the analysis of NMR spectra. The incorporation of NMR band deconvolutions offers an ideal platform to transition from qualitative to quantitative discernment of NMR data.

Keywords

second-term organic chemistry, isomeric analysis, NMR band deconvolution

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Bharti, S. K., Roy, R., “Quantitative 1H NMR Spectroscopy,” TrAC, 35, 5-26, May 2012.
 
[2]  Simmler, C., Napolitano, J. G., McAlpine, J. B., Chen, S.-N., Pauli, G. F., “Universal Quantitative NMR Analysis of Complex Natural Samples,” Current Opinion in Biotechnology, 25, 51-59, Feb. 2014.
 
[3]  Huang, S. R., Palmer, P. T., “Improving Student Understanding of Qualitative and Quantitative Analysis via GC/MS using a Rapid SPME-Based Method for Determination of Trihalomethanes in Drinking Water,” J. Chem. Educ., 94 (8), 1129-1132, Jul. 2017.
 
[4]  Fry, C. G., Hofstetter, H., Bowman, M. D., “A First Laboratory Utilizing NMR for Undergraduate Education: Characterization of Edible Fats and Oils by Quantitative 13C NMR,” J. Chem. Educ., 94 (9), 1319-1323, Jun. 2017.
 
[5]  Anderson, S. L., Rovnyak, D., Strein, T. G., “Identification of Edible Oils by Principal Component Analysis of 1H NMR Spectra,” J. Chem. Educ., 94 (9), 1377-1382, Jul. 2017.
 
[6]  Pauli, G. F., Gödecke, T., Jaki, B. U., Lankin, D. C., “Quantitative 1H NMR. Development and Potential of an Analytical Method: An Update,” J. Nat. Prod., 75 (4), 834-851, Apr. 2012.
 
[7]  Zivkovic, A., Bandolik, J. J., Skerhut, A. J., Coesfeld, C., Zivkovic, N., Raos, M., Stark, H., “Introducing Students to NMR Methods Using Low-Field 1H NMR Spectroscopy to Determine the Structure and the Identity of Natural Amino Acids,” J. Chem. Educ., 94 (1), 115-120, Dec. 2017.
 
[8]  Hilty, C., Bowen, S., “An NMR Experiment Based on Off-the-Shelf Digital Data-Acquisition Equipment,” J. Chem. Educ., 87 (7), 747-749, May 2010.
 
[9]  Harrell, M. L., Bergbreiter, D. E., “Using 1H NMR Spectra of Polymers and Polymer Products to Illustrate Concepts in Organic Chemistry,” J. Chem. Educ., 94 (11), 1668-1673, May 2017.
 
[10]  Collard, D. M., Jones, A. G., Kriegel, R. M., “Synthesis and Spectroscopic Analysis of a Cyclic Acetal: A Dehydration Performed in Aqueous Solution,” J. Chem. Educ., 78 (1), 70-72, Jan. 2001.
 
[11]  Pavia, D. L., Lampman, G. M., Kriz, G. S., Engel, R. G., A Microscale Approach to Organic Laboratory Techniques, 5th ed., Cengage: Boston, 2013.
 
[12]  Organic Chemistry Instructional Laboratory schedules. https://www.southalabama.edu/colleges/artsandsci/chemistry/laboratories.html [accessed 7 Feb. 2022].
 
[13]  Saba, S., Corozo-Morales, A., “Synthesis and NMR-Spectral Analysis of Achiral O,O- and N,N-Acetals: Anisochronous pro-R and pro-S Ligands in NMR Spectra,” J. Chem. Educ., 96 (2), 354-359, Dec. 2019.
 
[14]  Saba, S., Ciaccio, J. A., Espinal, J., Aman, C. E., “Synthesis and NMR Spectral Analysis of Amine Heterocycles: The Effect of Asymmetry on the 1H and 13C NMR Spectra of N,O-Acetals,” J. Chem. Educ., 84 (6), 1011-1013, Jun. 2007.
 
[15]  Mostad, S. B., Glasfeld, A., “Using High Field NMR to Determine Dehydrogenase Stereospecificity with Respect to NADH: An Undergraduate biochemistry lab,” J. Chem. Educ., 70 (6), 504-506, Jun. 1993.
 
[16]  Richardson, D. P., Wilson, W., Mattson, R. J., Powers, D. M., Dolan, B. T., “Discovering Stereoselectivity: Synthesis of Exo- and Endobrevicomin Using a Tunable Hydride Reduction: A Program of Organic Synthesis Experiments for Advanced Undergraduate Students,” J. Chem. Educ., 68 (11), 951-955, Nov. 1991.
 
[17]  Mihaleva, V. V., Korhonen, S.-P., van Duynhoven, J., Niemitz, M., Vervoort, J., Jacobs, D. M., “Automated Quantum Mechanical Total Line Shape Fitting Model for Quantitative NMR-Based Profiling of Human Serum Metabolites,” Anal. Bioanal. Chem., 406 (13), 3091-3102, May 2014.
 
[18]  Fakayode, S. O., “Purity Analysis of the Pharmaceuticals Naproxen and Propranolol: A Guided-Inquiry Laboratory Experiment in the Analytical Chemistry Laboratory,” J. Chem. Educ., 92 (1), 157-162, Aug. 2014.
 
[19]  For detailed instructions in the area of band deconvolutions, see: Delta™ NMR Data Processing Software. https://www.jeolusa.com/PRODUCTS/Nuclear-Magnetic-Resonance/Delta-NMR-Software [accessed 7 February 2022].
 
[20]  University of South Alabama Department of Chemistry Safety Rules. https://www.southalabama.edu/colleges/artsandsci/chemistry/resources/department_safety_rules_a.pdf [accessed 7 February 2022].
 
[21]  Letson, J. N., “Synthesis of Trimedlure from trans-6-Methyl-3-cyclohexene-1-carboxylic acid,” BS Honors Thesis, University of South Alabama, Mobile, AL, 2018.
 
[22]  Yakabe, S., Hirano, M., Morimoto, T., “Alumina-assisted Reduction of Carbonyl Compounds with Sodium Borohydride in Hexane,” Can. J. Chem., 76 (12), 1916-1921, Dec. 1998.
 
[23]  Taken from an adaptation on the preparation of 3-hydroxy-4-methylheptane from propanal, see: Mayo, D. W., Pike, R. M., Forbes, D. C., Microscale Organic Laboratory with Multistep and Multiscale Syntheses, 6th ed., Wiley: New York, 2015.