World Journal of Chemical Education. 2022, 10(2), 76-83
DOI: 10.12691/WJCE-10-2-4
Original Research

Study of Magnetic Interactions in Dy3+ Substituted Zn0.5Mg0.5DyxFe2-xO4 Ferrites

Sahi Ram1, and Shailndra Singh1

1Mössbauer Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur, Rajasthan, India- 342001

Pub. Date: May 19, 2022

Cite this paper

Sahi Ram and Shailndra Singh. Study of Magnetic Interactions in Dy3+ Substituted Zn0.5Mg0.5DyxFe2-xO4 Ferrites. World Journal of Chemical Education. 2022; 10(2):76-83. doi: 10.12691/WJCE-10-2-4

Abstract

Rare earth dysprosium substituted spinel ferrites with a composition of Zn0.5Mg0.5DyxFe2-xO4 (x = 0.0, 0.02, 0.10 and 0.20) were synthesized by the solid-state reaction method. X-ray diffraction studies revealed the formation of single-phase cubic structures for all compositions. The lattice constant and crystallite size varied with increasing Dy3+ content in the Zn-Mg ferrite. 57Fe Mössbauer spectroscopic studies were carried out to determine the chemical state of iron, its occupancy and relative amount in tetrahedral (A) sites, octahedral (B) sites or both. The obtained value of relative amount of iron in the tetrahedral (A) site, octahedral (B) site or both was used to obtain the cation distribution at the tetrahedral (A) and octahedral (B) sites. The cation distribution was used to determine the cation-cation distances, cation-anion distances and inter-ionic bond angles to understand the spin interactions and the impact of Dy3+ ion substitution on magnetic interactions in substituted Zn-Mg ferrites.

Keywords

spinel ferrite, cation distribution, Mössbauer spectroscopy, magnetic materials

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Hashim, M.; Alimuddin; Kumar, S.; Ali, S.; Koo, B. H.; Chung, H.; Kumar, R., “Structural, magnetic and electrical properties of Al3+ substituted Ni–Zn ferrite nanoparticles J. Alloys Compd., Vol. 511(1), pp. 107-114 (2012).
 
[2]  Ott, G., Wrba J. and Lucke, R., “Recent developments of Mn–Zn ferrites for high permeability applications” J. Magn. Magn. Mater., Vol. 254-255, pp. 535-537 (2003).
 
[3]  Thummer, K. P., Chhantbar, M. C., Modi, K. B., Baldha, G. J. and Joshi, H. H., “Localized canted spin behavior in ZnxMg1.5-xMn0.5FeO4 spinel ferrite system” J. Magn. Magn. Mater., Vol. 280(1), pp. 23-30 (2004).
 
[4]  Manikandan, A., Judith Vijaya, J., Sundararajan, M., Meghanathan, C., John Kennedy, L. and Bououdina, M., “Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method”, SuperLatt. And Microstr., Vol. 64, pp.118-131 (2013).
 
[5]  Rodriguez-Reyes, P. Y., Hernandez-Cortes, D. A., Escobedo-Bocardo, J. C., Almanza-Robles, J. M., Sanchez-Fuentes, H. J., Jasso-Teran, A., De-Leon-Prado, L. E., Mendez-Nonell, J. and HurTado-Lopez, G. F., “Structural and magnetic properties of Mg-Zn ferrites (Mg1-xZnxFe2O4) prepared by sol-gel method”, J. Magn. Magn. Mater., Vol. 427, pp. 268-271 (2017).
 
[6]  Choodamani, C., Rudraswamy, B. and Chandrappa, G.T., “Structural, electrical, and magnetic properties of zn substituted magnesium ferrite”, Ceram. Int., Vol. 42(9), pp. 10565-10571 (2016).
 
[7]  Goya, G. F. and Rechenberg, H. R., “Ionic disorder and Néel temperature in ZnFe2O4 nanoparticles” J. Magn. Magn. Mater., Vol. 196-197, pp. 191-192 (1999).
 
[8]  Masina, P., Moyo, T. and Abdallah, H. M. I., “Synthesis, structural and magnetic properties of ZnxMg1-xFe2O4 nanoferrites”, J. Magn. Magn. Mater., Vol. 381, pp. 41-49 (2015).
 
[9]  Phor, L., and Kumar, V., “Structural, magnetic and dielectric properties of lanthanum substituted Mn0.5Zn0.5Fe2O4”, Ceram. Int., Vol. 45, pp. 22972-22980 (2019).
 
[10]  Pachpinde, A.M., Langade, M.M., Lohar, K. S., Patange, S.M. and Sagar, E. S, “Impact of larger rare earth Pr3+ ions on the physical properties of chemically derived PrxCoFe2-xO4 nanoparticles”, Chemical physics”, Vol. 429, pp. 20-26 (2014).
 
[11]  Rezlescu, N., Rezlescu, E., Pasnicu, C. and Craus, M. L., “Effects of the rare-earth ions on some properties of a nickel-zinc ferrite”, J. Phys: Condens Matter., Vol. 6, pp. 5707-5716 (1994).
 
[12]  Biao, Z., Ya-Wen, Z., Chun-Sheng, L/, Chun-Hua, Y., Liang-Yao, C. and Song-You, W., “Rare-earth-mediated magnetism and magneto-optical Kerr effects in nanocrystalline CoFeMn0.9RE0.1O4 thin films”, J. Magn. Magn. Mater., Vol. 280(2-3), pp. 327-333 (2004).
 
[13]  Peng, J., Hojamberdiev, M., Xu, Y., Cao, B., Wang, J. and Wu, H., “Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles”, J. Magn. Magn. Mater., Vol. 323(1), pp. 133-137 (2011).
 
[14]  Akamatsu, H., Kawabata, J., Fujita, K., Murai, S. and Tanaka, K., “Magnetic properties of oxide glasses containing iron and rare earth ions”, Phys. Rev. B 84, 144408 (2011).
 
[15]  Lakhani, V. K., Pathak, T. K., Vasoya, N. H. and Modi, K. B., “ Structural parameters snd x-ray Debye temperature determination study on copper-ferrite-aluminates”, Solid State Sci., Vol. 13, pp. 539-547 (2011).
 
[16]  Kumar, G., Singh, V. P., Kumar, A., Shah, J., Kumar, S., Chauhan, B. S., Kotnala, R. K. and Singh, M., “Estimation of magnetic interactions in substituted Mg-Mn ferrites synthesized via citrate precursor technique”, Adv. Mater. Lett., Vol. 6(9), pp. 828-833 (2015).
 
[17]  Rodriguez-Carvajal, B, “Recent developments of the program FULLPROF, commission on powder diffraction”, IUCr. Newsl., Vol. 26 (2001).
 
[18]  Nigam, A.N., Tripathi, R.P., Singh, H.S., Gambhir, R.S. and Lukose, N.G., “Mössbauer studies on Ghotaru Well No.1 of Jaisalmer Basin”, Fuel, Vol. 68(2), pp. 209-212 (1989).
 
[19]  Meerwall, E. V., “A least-square spectral curve fitting routine for strongly overlapping Lorentzians or Gaussians”, Computer physics communications, Vol. 9, pp.117-128 (1975).
 
[20]  Zipare, K. V., Bandgar, S. S. and Shahane, G. S., “Effect of Dy-substitution on structural and magnetic properties of Mn-Zn ferrite nanoparticles”, J. Rare Earths, Vol. 36, pp. 86-94 (2018).
 
[21]  Ahmed, M. A., Ateia, E. and El-Dek, S. I., “Rare earth doping effect on the structural and electrical properties of Mg–Ti ferrite”, Mat. Lett., Vol. 57 (26-27), pp. 4255-4266 (2003).
 
[22]  Cullity, B. D. and Stock, S. R., Elements of X-ray diffraction”, Third Ed. Prentice-Hall, New York”, (2001).
 
[23]  Mohseni, H., Shokrollahi, H., Sharifi, I. and Gheisari, K., “Magnetic and structural studies of the Mn-doped Mg–Zn ferrite nanoparticles synthesized by the glycine nitrate process”, J. Magn. Magn. Mater., Vol. 324, no. 22, pp 3741-3747 (2012).
 
[24]  Rahman, S., Nadeem, K., Anis-ur-Rehman, M., Mumtaz, M., Naeem, S. and Letofsky-Papst, I., “Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method”, Ceram. Int., Vol. 39, pp. 5235-5239 (2013).
 
[25]  Anwar, A., Zulfiqar, S., Yousuf, M. A., Ragab, S. A., Khan, M. A., Shakir, I. and Warsi, M. F., “Impact of rare earth Dy3+ cations on the various parameters of nanocrystalline nickel spinel ferrite” J. Mater. Res. Technol., Vol. 9(3), pp. 5313-5325 (2020).
 
[26]  Kumar, S., Farea, A.M.M., Batoo, K.M., Lee, C.G., Koo, B.H. and Yonsef, A., “Mössbauer studies of Co0.5CdxFe2.5-xO4 (0.0≤x≤0.5) ferrite”, Physica B: Condensed matter, Vol. 403 (19-20), pp. 3604-3607 (2008).
 
[27]  Eltabey, M.M., Massoud, A.M. and Radu, C., “Microstructure and Superparamagnetic Properties of Mg-Ni-Cd Ferrites Nanoparticles”, Journal of nanomaterials, Vol. 204, pp. 492832 (2014).
 
[28]  Wang, J., Zeng, C., Peng, Z. and Chen, Q.,Synthesis and magnetic properties of Zn1−xMnxFe2O4 nanoparticles” Physica B” Vol. 349 (1-4), pp. 124-128 (2004).
 
[29]  Sreeja, V., Vijyanand, S., Deka, S. and Joy, P., “Magnetic and Mössbauer spectroscopic studies of NiZn ferrite nanoparticles synthesized by a combustion method”. Hyperfine interaction, Vol. 183(1-3), pp. 99-107 (2008).
 
[30]  Gupta, M. and Randhawa, B.S., “Mössbauer, magnetic and electric studies on mixed Rb–Zn ferrites prepared by solution combustion method”, Mat. Chem. and phys., Vol. 130, pp. 513-518 (2011).
 
[31]  Suwalka, O., Sharma, R. K., Sebastian, V., Laxm,i N. and Venogopalan, K., “A study of nanosized Ni substituted Co-Zn ferrite prepared by coprecipitation”, J. Magn. Magn. Mater., Vol. 313, 198-203 (2007).
 
[32]  Mohammed, K.A., Al-Rawas, A.D., Gismelseed, A.M., Setlai, A., Widatallah, H.M., Yousif, A., Elzain, M.E. and Shongwe, M., “Infrared and structural studies of Mg1-xZnxFe2O4 ferrites”, Physica B, Vol. 407, pp. 795-804 (2012).
 
[33]  Phor, L., Chahal, S. and Kumar, V., “Zn2+ substituted superparamagnetic MgFe2O4 spinel-ferrites: Investigation on structural and spin-interactions”, J. Adv. Ceram., Vol. 9(5), pp. 576-587 (2020).
 
[34]  Globus, A., Pascard, H. and Cagan, V., “Distance between magnetic ions and fundamental properties in ferrite” Journal of Phys. Colloques, Vol. 38, pp. 163-168 (1977).
 
[35]  Mazen, S.A., Abdallah, M.H., Sabrah, B.A., and Hashem, H. A. M., “The Effect of Titanium on Some Physical Properties of CuFe2O4” Physica Status solidi (a), Vol. 134(1), pp. 263-271 (1992).
 
[36]  Chouhan, B. S., Kumar, R., Jadhav, K. M. and Singh, M., “Magnetic study of substituted Mg-Mn ferrites synthesized by citrate precursor method” J. Magn. Magn. Mater., Vol. 283, p 71 (2005).
 
[37]  Kumar, G., Kanthwal, M., Chauhan, B. S. and Singh, M., “ Cation distribution in mixed Mg-Mn ferrites from X-Ray diffraction technique and saturation magnetization”, Ind. J. Pure & Appl. Phys., Vol. 44(12), pp. 930-934 (2006).
 
[38]  Zaki, H. M., Al-Heniti, S. H., Elmosalami, T. A., “Structural. magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite”, J. of Alloys and comp., Vol. 633, pp.104-114 (2015).
 
[39]  Sharma, R. K., Sebastian, V., Lakshmi, N., Venugopalan, K., Raghavendra, R. and Gupta, A., “Variation of structural and hyperfine parameters in nanoparticles of Cr-substituted Co-Zn ferrites”, Phys. Rev. B 75, 144419 (2007).
 
[40]  Jani, K. H., Chhantbar, M. and Joshi, H., “Study of magnetic ordering in MnAlxCrxFe2-2xO4”, J. Magn. Magn. Mater., Vol. 18, pp. 2208-2214 (2008).
 
[41]  Shirsath, S. E., Kadam, R. H., Patange, S. M., Mane, M. L., Ghasemi, A. and Morisako, A., “Enhanced magnetic properties of Dy3+ substituted Ni-Cu-Zn ferrite nanoparticles”, Appl. Phys. Lett., Vol. 100, 042407 (2012).