World Journal of Chemical Education. 2022, 10(4), 137-148
DOI: 10.12691/WJCE-10-4-3
Original Research

Methylene Blue - New Chemistry Experiments for University Education

P. Wagler1, J. Scheible1 and A. Habekost1,

1University of Education Ludwigsburg, Ludwigsburg, Germany

Pub. Date: November 29, 2022

Cite this paper

P. Wagler, J. Scheible and A. Habekost. Methylene Blue - New Chemistry Experiments for University Education. World Journal of Chemical Education. 2022; 10(4):137-148. doi: 10.12691/WJCE-10-4-3

Abstract

The redox reactions of methylene blue on screen printed electrodes (SPEs) can be measured electrochemically by cyclic voltammetry (CV) and spectroscopically by optical and Raman spectroscopy. The combination of cyclic voltammetry and optical or Raman spectroscopy, known as absorpto- or Raman voltammetry, provides not only electrochemical information about redox reactions at electrodes, but also about changes in the visible and Raman properties of the substances used. Raman scattering can be enhanced by a simple electrochemical in-situ modification; this leads to an electrochemically activated surface enhanced Raman effect (EC-SERS). Therefore, chemical reactions, based on the change in vibrational states of the substances under investigation, can be characterized in a very simple way. In this article, we compare different electrodes and show that the electrochemical reactions of methylene blue strongly depend on the electrodes used. In addition, the electropolymerization of methylene blue is discussed. At the end of the article, a script for students for measuring the spectroelectrochemistry of methylene blue is presented in detail. The didactic background is that the combination of electrochemical information, such as potentials and current fluxes, with spectroscopic information, such as absorption and/or vibrational changes, leads to a better understanding of electrochemistry.

Keywords

absorptovoltammetry, surface-enhanced Raman spectroscopy, electropolymerization

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  https://de.wikipedia.org/wiki/Methylenblau (8.9.22).
 
[2]  https://de.wikipedia.org/wiki/Neuroleptikum (8.9.22).
 
[3]  L.C. Lee, D. Meisel, J. Phys. Chem. 1982, 86, 3391.
 
[4]  P.J. Garnett, D.F. Treagust D.F., J. Res. in Sci. Teach. 1992, 29, 2, 121.
 
[5]  L. L. Combs, J. Chem. Educ, 1993, 70, 462-464
 
[6]  J. Parkinson, D. Hendley, H. Tanner, A. Stables, Pupils¡¯ Attitudes to Science in Key Stage 3 of the National Curriculum: A Study of Pupils in South Wales, 1998, 16, 165.
 
[7]  I. Bellou, N.M. Papachristos, T.A. Mikropoulos, 2018, Digital Learning Technologies in Chemistry Education: A Review. In: D. Sampson, D., Ifenthaler, J.M. Spector (eds.) (2018): Digital Technologies: Sustainable Innovations for Improving Teaching and Learning, Springer.
 
[8]  B. Dalgarno, M.J.W. Lee M.J.W., British J. Educ. Tech. 2010, 41, 1, 10-32
 
[9]  V. Svetlicic, V. Zutic, J. Clavilier, J. Chevalet, J. Electroanal. Chem. 1985, 195, 307.
 
[10]  V. Svetlicic, V. Zutic, J. Clavilier, J. Chevalet, J. Electroanal. Chem. 1987, 219, 183.
 
[11]  J. Liu, S. Mu, Synth. Metals, 1999, 107, 159.
 
[12]  A.A. Karyakin, A.K. Strakhova, E.E. Karyakina, S.D. Varfolomeyev, A.K. Yatsimirsky, Bioelectrochem. and Bioenerget. 1993, 32, 35.
 
[13]  A. Habekost, Nachr. aus der Chemie 2022, 70 (3), 19.
 
[14]  S.H. de Araujo Nicolai, P.R.P. Rodrigues, S.M.L. Agostinho, J.C. Rubim, J. Electroanal. Chem. 2002, 527, 103.
 
[15]  G-N. Xiao, S-Q. Man, Chem. Phys. Lett. 2007, 447, 305.
 
[16]  C. Li, Y. Huang, K. Lai, B.A. Rasco, Y. Fan, Food Control 2016, 65, 99.
 
[17]  T. Engel, P. Reid, 2006, Physikalische Chemie. Munich: Pearson Studium.
 
[18]  R. Holze, 2001, Elektrochemisches Praktikum. Stuttgart: B.G. Teubner.
 
[19]  C. Li, Y. Huang, K. Lai, K., B. Rasco, Y. Fan, Y. (2016). Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control, pp. 99-105.
 
[20]  S. Roy, M. Ghosh, J. Chowdhur (2015). Adsorptive parameters and influence of hot geometries on the SER(R)S spectra of methylene blue molecules adsorbed on gold nanocolloidal particles. Journal of Raman Spectroscopy, pp. 451-461.
 
[21]  W. Walter, F. Wittko, 2004, Lehrbuch der organischen Chemie (24th edition). Stuttgart: S. Hirzel Verlag.
 
[22]  G-N. Xiao, S-Q. Man, Chem. Phys. Lett. 2007, 447, 305.
 
[23]  A.J. Bard, L.R. Faulkner (2001). Electrochemical Methods (2nd Edition), John Wiley, Hoboken, NJ.
 
[24]  R.G. Compton, C.E. Banks (2011). Understanding Voltammetry (2nd Edition), Imperial College Press, London.
 
[25]  T. Fox (2016). Infrarot- und Raman-Spektren. In S. Bienz, L. Bigler, T. Fox, & H. Meier (2016). Spektroskopische Methoden in der organischen Chemie (9th edition, pp. 37-74). Stuttgart: Thieme.
 
[26]  E. Gileadi (2013). Physical Electrochemistry, Wiley-VCH, Weinheim.
 
[27]  W. Schmickler (1996). Grundlagen der Elektrochemie, Friedr. Vieweg & Sohn Verlagsgesellschaft, Braunschweig.
 
[28]  E. Smith, G. Dent (2019). Modern Raman Spectroscopy: A Practical Approach, Wiley.
 
[29]  P. Vandenabeele (2013). Practical Raman Spectroscopy: An Introduction, Wiley, Weinheim.
 
[30]  W. Vielstich, W. Schmickler (1976). Elektrochemie II: Kinetik elektrochemischer Systeme, Steinkopff Verlag, Darmstadt.