World Journal of Chemical Education. 2023, 11(1), 1-3
DOI: 10.12691/WJCE-11-1-1
Original Research

Why Cyclohexatriene (C6H6, pKa = 43) is Less Acidic than Cyclopentadiene (C5H6, pKa = 15) and Cycloheptatriene (C7H8, pKa = 36): A Freshmen Chemical Education Undergraduate Exercise

Sanjeev Rachuru1, Devarakonda A. Padmavathi2 and V. Jagannadham2,

1Department of Chemistry, Geethanjali College of Engineering and Technology, Cheeryal-501301, Telangana, India

2Department of Chemistry, Osmania University, Hyderabad-500007, India

Pub. Date: January 16, 2023

Cite this paper

Sanjeev Rachuru, Devarakonda A. Padmavathi and V. Jagannadham. Why Cyclohexatriene (C6H6, pKa = 43) is Less Acidic than Cyclopentadiene (C5H6, pKa = 15) and Cycloheptatriene (C7H8, pKa = 36): A Freshmen Chemical Education Undergraduate Exercise. World Journal of Chemical Education. 2023; 11(1):1-3. doi: 10.12691/WJCE-11-1-1

Abstract

The pKa of Cyclohexatriene (Benzene) is 43. And that of Cyclopentadiene and Cycloheptatriene are 15 and 36 respectively. In the ascending order of number of carbon atoms of the three cyclic hydrocarbons, Cyclohexatriene lies between Cyclopentadiene and Cycloheptatriene. It is a tempting belief of undergraduate chemists who begin to pursue their undergraduate course that the pKas will be in the same increasing order with increase in ring size. But surprisingly pKa of Cyclohexatriene is more than that of either Cyclopentadiene and or Cycloheptatriene. Suitable explanations are given.

Keywords

Cyclohexatriene, Cyclopentadiene, Cycloheptatriene and pKa

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  O. W. Webster, J. Am. Chem. Soc., 88, 1966, 3046
 
[2]  E. P. Serjeant and B. Dempsey (eds.), Ionization Constants of Organic Acids in Solution, IUPAC Chemical Data Series No. 23, Pergamon Press, Oxford, UK, 1979.
 
[3]  O. A. Reutov, I. P. Beletskaya, K. P. Butin, CH—Acids: A Guide to All Existing Problems of CH-Acidity with New Experimental Methods and Data, Including Indirect Electrochemical, Kinetic and Thermodynamic Studies, Pergamon Press LtD., First Edition 1978, Page 15.
 
[4]  Francis A. Carey and Richard J. Sundberg, Advanced Organic Chemistry: Part A: Structure and Mechanisms, 5th Edition, By Springer Science & Business Media, 2007, Chapter 1, page 12.
 
[5]  Roland Schmid and Arzu M. Miah, J. Chem. Edu. 2001, 78, page 116.
 
[6]  Erich Hückel, Zeitschrift für Physik, 1931, 70, 204-286.
 
[7]  R. Trachuk and C. C. Lee, Can. J. Chem., Vol. 37 (1050), 1644
 
[8]  Roberts, J. D., Streitwieser, A, JR., and Regan, C. M., J. Am. Chem. Soc., 74, 4579 (1952)
 
[9]  James Ashenhurst in the link https://www.masterorganic chemistry.com/2017/03/03/aromatic-antiaromatic-nonaromatic-some-practice-problems/#:~:text=The%20easiest%20example% 20to%20start,%2B%200%20%3D%206%20pi%20electrons.
 
[10]  Organic Chemistry Reagent Guide,  CreateSpace Independent Publishing Platform, 2013, 9781482523287 (ISBN10: 1482523280).
 
[11]  Ouellette, Robert J. (2015). Principles of Organic Chemistry, Amines, and Amides., 315-342.
 
[12]  Erich Hückel, “Grundziige der Theorie ungesattigter und aromatischer Verbindungen,” Verlag Chemie, Berlin, 1938, pp. 71-85.