World Journal of Chemical Education. 2023, 11(3), 21-24
DOI: 10.12691/WJCE-11-3-1
Special Issue

3D Printing and a New Way to Synthesize Bio-Based and Biodegradable PLA in Chemistry Education for School Students

Felix Pawlak1, and Stefan Schwarzer1

1University of Tübingen, Chemistry Education, Tübingen, Germany

Pub. Date: August 21, 2023
(This article belongs to the Special Issue Innovative experiments in chemistry didactics in Germany)

Cite this paper

Felix Pawlak and Stefan Schwarzer. 3D Printing and a New Way to Synthesize Bio-Based and Biodegradable PLA in Chemistry Education for School Students. World Journal of Chemical Education. 2023; 11(3):21-24. doi: 10.12691/WJCE-11-3-1

Abstract

Plastics are a central part of our everyday lives. One plastic is increasingly finding its way into daily use: polylactic acid (PLA). PLA is being used more and more, as it is an important component (polymer) of bio-based and biodegradable plastic. However, experimental access to plastics for students in school chemistry classes is usually tricky because the syntheses of plastics either are time-consuming or do not provide the intended results. Therefore, an experiment was developed that provides simple and quick access polymers and plastics. With this experiment, school students can independently synthesize polylactic acid in chemistry lessons.

Keywords

polycondensation, polylactic acid, plastics, school experiment, 3D printing, circular economy

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Ministerium für Kultus, Jugend und Sport Baden-Württemberg, Bildungsplan des Gymnasiums. Chemie – Überarbeitete Fassung vom 25. März 2022, Neckar-Verlag, Stuttgart, 2022.
 
[2]  Meier, M., Schubatzky, T., Obczovsky, M., Thoms, L.-J., and Thyssen, C., Fachdidaktische Perspektiven und Szenarien des 3D-Drucks im naturwissenschaftlichen Unterricht, MNU Journal, 75 (1), 2022, 79–84.
 
[3]  Scheid, M., Hock, K. and Schwarzer, S., 3D Printing in Chemistry Teaching: From a Submicroscopic Molecule to Macroscopic Functions - Development of a Molecular Model Set and Experimental Analysis of the Filaments. World Journal Chemistry Education, 7 (2), 2019, 72–83.
 
[4]  Schwarzer, S., Parchmann, I., Hübner, D., Wahler, J., Liesener, F., Pachaly, B. and Zdzieblo, J., Basisartikel: Strukturen nach Maß - Von der chemischen Forschungsidee zu Erkenntnissen und Produkten. NiU Chemie, 29 (164), 2018, 2–9.
 
[5]  Paukstelis, P.J., MolPrint3D: Enhanced 3D Printing of Ball-and-Stick Molecular Models. J. Chem. Educ., 95 (1), 2018, 169–172.
 
[6]  Jones, O.A.H. and Spencer, M.J.S. A Simplified Method for the 3D Printing of Molecular Models for Chemical Education. J. Chem. Educ., 95 (1), 2018, 88–96.
 
[7]  Renner, M., und Griesbeck, A. (2020) Think and Print: 3D Printing of Chemical Experiments. J. Chem. Educ., 97 (10), 3683–3689.
 
[8]  Linkwitz, M., Zidny, R., Nida, S., Seeger, L., Belova, N. and Eilks, I., Simple green organic chemistry experiments with the kitchen microwave for high school chemistry classrooms. Chem. Teach. Int., 4 (2), 2022, 165–172.
 
[9]  Zowada, C., Linkwitz, M., Siol, A. and Eilks, I., Evaluating Sustainability in chemistry teaching. CHEMKON, 27 (8), 2020, 365–372.
 
[10]  Vacano, B., Mangold, H., and Seitz, C., Kunststoffe im Kreislauf: Die Zeit ist reif. Chem. Unserer Zeit, 55 (6), 2021, 374–385.
 
[11]  Sin, L.T. and Bee Soo Tueen, Polylactic acid: a practical guide for the processing, manufacturing, and applications of PLA, Elsevier, Oxford, United Kingdom; Cambridge, MA, United States, 2019.
 
[12]  Masutani, K. and Kimura, Y., PLA Synesis. From the Monomer to the Polymer, in Jiménez, A., Peltzer, M. and Ruseckaite, R. (Eds.) Polymer Chemistry Series, Royal Society of Chemistry, Cambridge, 2014, 1–36.
 
[13]  Taib, N.-A.A.B., Rahman, M.R., Huda, D., Kuok, K.K., Hamdan, S., Bakri, M.K.B., Julaihi, M.R.M.B. and Khan, A., A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull., 80 (2), 2023, 1179–1213.
 
[14]  Haider, T.P., Völker, C., Kramm, J., Landfester, K. and Wurm, F.R., Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed., 58 (1), 2019, 50–62.
 
[15]  Wagner, G., Werkstoffe aus Milch und Zucker. Biologisch abbaubare Werkstoffe im Chemieunterricht. NiU Chemie, 10 (50), 1999, 24–28.
 
[16]  Remus, L., PLA aus Milchsäure. Ein Kurzversuch für die Sek. I. PdN Chemie, 54 (4), 2005, 44–47.
 
[17]  Robert, J.L. and Aubrecht, K.B., Ring-Opening Polymerization of Lactide To Form a Biodegradable Polymer. J. Chem. Educ., 85 (2), 2008, 258–260.
 
[18]  Linkwitz, M., and Eilks, I. (2020). Greening the Senior High School Chemistry Curriculum: An Action Research Initiative. In ACS Symposium Series, American Chemical Society, Washington, DC, 55–68.
 
[19]  Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M. and Desobry, S., Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf., 9 (5), 2010, 552–571.