World Journal of Chemical Education. 2023, 11(3), 87-91
DOI: 10.12691/WJCE-11-3-11
Special Issue

Spectral Interaction between ECL of Luminol and Different Luminophores - New Spectroelectrochemical Experiments for Students

A. Habekost1,

1University of Education Ludwigsburg, Ludwigsburg, Germany

Pub. Date: August 28, 2023
(This article belongs to the Special Issue Innovative experiments in chemistry didactics in Germany)

Cite this paper

A. Habekost. Spectral Interaction between ECL of Luminol and Different Luminophores - New Spectroelectrochemical Experiments for Students. World Journal of Chemical Education. 2023; 11(3):87-91. doi: 10.12691/WJCE-11-3-11

Abstract

The resonant energy transfer from luminol / H2O2 to various luminophores is described in detail. The emission of light is triggered by the electrogenerated chemiluminescence of luminol. Luminophores can absorb the light and fluoresce. By using a mixture of different dyes, a wide range of emissions can be produced. The luminophore [Ru(bpy)3]2+ / tripropylamine can react in two ways: Either it can fluoresce by resonance energy transfer from the luminol, or it can emit by ECL itself.

Keywords

Electrogenerated chemiluminescence, fluorovoltammetry, resonant energy transfer

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  K. Hiramoto, E. Villani, E., T. Iwama, T., K. Komatsu, S. Inagi, K.Y. Inoue, Y. Nashimoto, K. Ino, H. Shiku, Recent Advances in Electrochemiluminescence-Based Systems for Mammalian Cell Analysis. Micromachines, 2020, 11, 530.
 
[2]  M. Tausch, Chemie mit Licht, Innovative Didaktik für Studium und Unterricht, Springer, Berlin, 2019, p121-122.
 
[3]  A. Roda, M. Guardigli, E. Michelini, Nanobioanalytical luminescence: Förster-type energy transfer methods, Anal. Bioanal. Chem. 2009, 393,109.
 
[4]  D. Ibanez, M.B. Gonzalez-Garcia, D. Hernandez-Santos, P. Fanjul-Bolado, Understanding the ECL interaction of luminol and [Ru(bpy)3]2+ luminophores by spectroelectrochemiluminescence, Phys. Chem. Chem. Phys. 2020, 22, 18261.
 
[5]  W. Miao, J.P. Choi, A.J. Bard, ElectrogeneratedChemiluminescence 69: The Tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System Revisited - A NewRoute Involving TPrA •+ Cation Radicals, J. Am. Chem. Soc. 2002, 124, 14478.
 
[6]  A. Kapturkiewicz, Electrogenerated chemiluminescence from the tris(2,2'-bipyridine)ruthenium(II) complex, Chem. Phys. Lett. 1995, 236, 389.
 
[7]  D. M. Hercules, F. E. Lytle, Chemiluminescence from reduction reactions, J. Am. Chem. Soc. 1966, 88, 4795.
 
[8]  M. M. Richter, Electrochemiluminescence (ECL), Chem. Rev. 2004, 104, 3003.