World Journal of Chemical Education. 2023, 11(3), 97-103
DOI: 10.12691/WJCE-11-3-13
Special Issue

Nanomedicine in Chemistry Education: Development of a Digital Learning Module with Real Life Experiments

Antonia Fruntke1, Nicolai ter Horst1, Christoph Bley1, Benedikt Blümbott1, Mira Behnke2, 3, Leanne M. Stafast2, 3, Antje Vollrath2, 3, Ulrich S. Schubert2, 3 and Timm Wilke1, 3,

1Institute for Inorganic and Analytical Chemistry, Chemistry Education, Friedrich Schiller University Jena,

2August-Bebel-Straße 2, 07743 Jena, Germany

3Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena,

Pub. Date: September 06, 2023
(This article belongs to the Special Issue Innovative experiments in chemistry didactics in Germany)

Cite this paper

Antonia Fruntke, Nicolai ter Horst, Christoph Bley, Benedikt Blümbott, Mira Behnke, Leanne M. Stafast, Antje Vollrath, Ulrich S. Schubert and Timm Wilke. Nanomedicine in Chemistry Education: Development of a Digital Learning Module with Real Life Experiments. World Journal of Chemical Education. 2023; 11(3):97-103. doi: 10.12691/WJCE-11-3-13

Abstract

This publication introduces a digital learning module on the topic of nanomedicine for chemistry education in high schools and for student laboratories. Nanoparticles provide a modern approach for treating diseases. By encapsulating active ingredients in nanoparticles the ingredients are not distributed in the entire body, but can be specifically transported and released to the target organs and tissues. The advantage of this approach is that a higher dose can reach the designated target while minimizing the overall dosage and resulting side effects. This research topic offers excellent links to classical school chemistry contents such as polymer chemistry, polymerization, ester formation and cleavage, polarity, and solubility. The digital learning module is based on a differentiation grid that offers students with varying learning backgrounds an individual way to access and engage with the module.

Keywords

drug delivery, nanomedicine, digitalization, polyesters, nanoparticle, esterification, hydrolysis, high school / introductory chemistry, first-year undergraduate / general laboratory, differentiation grid.

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Behnke, M., Holick, C. T., Vollrath, A., Schubert, S., Schubert, U. S., “Knowledge-Based Design of Multifunctional Polymeric Nanoparticles,” in Michel, M. C. (Eds.), Handbook of experimental pharmacology. Springer Verlag, Berlin, 1-24, 2023.
 
[2]  Englert, C., Brendel, J. C., Majdanski, T. C., Yildirim, T., Schubert, S., Gottschaldt, M., Windhab, N., Schubert, U. S., “Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications,” Progr. in Polym. Sci., 87, 107–164, 2018.
 
[3]  Sasse, A., Schulzeck, U., “Die Differenzierungsmatrix als Rahmen für Planung und Reflexion inklusiven Unterrichts,” in Sasse, A., Schulzeck, U. (Eds.), Inklusiven Unterricht planen, gestalten und reflektieren: Die Differenzierungsmatrix in Theorie und Praxis; Lernen inklusiv und kooperativ, Vol. 1, Verlag Julius Klinkhardt, Bad Heilbrunn, 11–34, 2021.
 
[4]  Fruntke, A., Behnke, M., Stafast, L. M., Träder, T., Dietel, E., Vollrath, A., Weber, C., Schubert, U. S., Wilke, T., “Targeted Drug Delivery: Synthesis of Smart Nanocarriers for School Chemistry Education,” J. Chem. Educ., 100 (2), 751–759, 2023.
 
[5]  Musyanovych, A., Schmitz-Wienke, J., Mailänder, V., Walther, P., Landfester, K., “Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions,” Macromol. Biosci., 8 (2), 127–139, 2008.
 
[6]  Lohmeijer, B. G. G., Pratt, R. C., Leibfarth, F., Logan, J. W., Long, D. A., Dove, A. P., Nederberg, F., Choi, J., Wade, C., Waymouth, R. M., Hedrick, J. L., “Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters,” Macromolecules 39 (25), 8574–8583, 2006.
 
[7]  Simón, L., Goodman, J. M., “The mechanism of TBD-catalyzed ring-opening polymerization of cyclic esters,” J. Org. Chem, 72 (25), 9656–9662, 2007.
 
[8]  Martínez Rivas, C. J., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q. A., Galindo Rodríguez, S. A., Román, R. Á., Fessi, H., Elaissari, A., “Nanoprecipitation process: From encapsulation to drug delivery,” Int. J. Pharm. 532 (1), 66–81, 2017.
 
[9]  Miladi, K., Sfar, S., Fessi, H., Elaissari, A., “Nanoprecipitation Process: From Particle Preparation to In Vivo Applications,” in Vauthier, C., Ponchel, G. (Eds.), Polymer Nanoparticles for Nanomedicines, Springer International Publishing, Cham, 17–53, 2016.
 
[10]  Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., Silva, A. M., Santini, A., Souto, E. B., “Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology,” Molecules, 25 (16), 3731-3751, 2020.
 
[11]  Fessi, H., Puisieux, F., Devissaguet, J., Ammoury, N., Benita, S., “Nanocapsule formation by interfacial polymer deposition following solvent displacement,” Int. J. Pharm. 55 (1), R1-R4, 1989.
 
[12]  Pham, S. H., Choi, Y., Choi, J., “Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery,” Pharmaceutics 12 (7), 630-648, 2020.
 
[13]  Knutson, C. M., Hilker A. P., Tolstyka, Z. P., Anderson, C. B., Wilbon, P. A., Mathers, R. T., Wentzel, M. T., Perkins, A. L., & Wissinger, J. E., “Dyeing to Degrade: A Bioplastics Experiment for College and High School Classrooms,” J. Chem. Educ. 96 (11), 2565–2573, 2019.
 
[14]  Schulte to Brinke, A., Mehlich, A., Doberenz, C., Janssens-Böcker, C., “Acidification of the Skin and Maintenance of the Physiological Skin pH Value by Buffered Skin Care Products Formulated around pH 4,” J. Cosmet. Dermatol. Sci. Appl., 11 (1), 44–57, 2021.
 
[15]  Fujimori, S., “Gastric acid level of humans must decrease in the future,” World J. Gastroenterol., 26 (43), 6706–6709, 2020.
 
[16]  Fallingborg, J., “Intraluminal pH of the human gastrointestinal tract,” Dan. Med. Bull., 46 (3), 183–196, 1999.
 
[17]  Hua, S., “Physiological and Pharmaceutical Considerations for Rectal Drug Formulations,” Front. Pharmacol., 10, 1196, 2019.
 
[18]  Baliga, S., Muglikar, S., Kale, R., “Salivary pH: A diagnostic biomarker,” J. Indian Soc. Periodontol., 17 (4), 461–465, 2013.
 
[19]  Sasse, A., Schulzeck, U., “Differenzierungsmatrizen als Modell der Planung und Reflexion inklusiven Unterrichts – zum Zwischenstand in einem Schulversuch,” in Jantowski, A., (Ed.), Gemeinsam leben. Miteinander lernen., Impulse, Vol. 58, Thüringer Institut für Lehrerfortbildung, Lehrplanentwicklung und Medien (Thillm), Bad Berka, 13–22, 2013.
 
[20]  Woest, V., Engelmann, P., „Fächerverbindender naturwissenschaftlicher Unterricht,“ in Sasse, A., Schulzeck, U. (Eds.), Inklusiven Unterricht planen, gestalten und reflektieren: Die Differenzierungsmatrix in Theorie und Praxis, Lernen inklusiv und kooperativ, Vol. 1, Verlag Julius Klinkhardt, Bad Heilbrunn 125–142, 2021.
 
[21]  Sasse, A., Schulzeck, U., “Die thematische Komplexität des gemeinsamen Lerngegenstandes - Differenzierungsmatritzen aus subjektwissenschaftlicher Perspektive,“ in Sasse, A., Schulzeck, U. (Eds.), Inklusiven Unterricht planen, gestalten und reflektieren: Die Differenzierungsmatrix in Theorie und Praxis, Lernen inklusiv und kooperativ, Vol. 1, Verlag Julius Klinkhardt, Bad Heilbrunn, 51–77, 2021.
 
[22]  Parchmann, I.,Gräsel, C.,Baer, A.,Nentwig,P., Demuth,R.,Ralle, B. andthe ChiK ProjectGroup, “ ’Chemie im Kontext’: A symbiotic implementation of a context-based teaching and learning approach,” Int J Sci Educ, 28,1041–1062, 2006.
 
[23]  Krackel, B., “Die kognitive Komplexität des gemeinsemn Lerngegenstands - Differenzierungsmatritzen aus lernpsychologischer Perspektive,” in Sasse, A., Schulzeck, U. (Eds.), Inklusiven Unterricht planen, gestalten und reflektieren: Die Differenzierungsmatrix in Theorie und Praxis, Lernen inklusiv und kooperativ, Vol. 1, Verlag Julius Klinkhardt, Bad Heilbrunn, 35–50, 2021.
 
[24]  Anderson, L. W., Krathwohl, D. R., A taxonomy for learning, Teaching, and Assessing. A revision of Bloom's taxonomy of Educational Objectives: Complete Edition, Longman, New York, 2001.
 
[25]  Blömeke, S., Risse, J., Müller, C., Eichler, D., Schulz, W., „Analyse der Qualität von Aufgaben aus didaktischer und fachlicher Sicht. Ein allgemeines Modell und seine exemplarische Umsetzung im Unterrichtsfach Mathematik,“, Unterrichtswissenschaft 34 (4), 330-357, 2006.
 
[26]  Thüringer Ministerium für Bildung, Wissenschaft und Kultur, Lehrplan für den Erwerb der allgemeinen Hochschulreife Chemie, 2012.Leisen, J., „Lernprozesse mithilfe von Lernaufgaben strukturieren. Informationen und Beispiele zu Lernaufgaben im kompetenzorientierten Unterricht,“ NiU Physik, 21 (117/118), 9–13, 2010.
 
[27]  Oser, F. K., Baeriswyl, F. J., “Choreographies of Teaching: Bridging Instruction to Learning,“ in Richardson, V. (Ed.), Handbook of research on teaching, 4. ed., American Educational Research Association, 1031–1065, 2002.
 
[28]  Seibert, J., Luxenburger-Becker, H., Marquardt, M., Lang, V., Perels, F., Kay, C. W. M., Huwer, J., “Multitouch Experiment Instruction for a Better Learning Outcome in Chemistry Education,” World J. Chem. Educ., 8 (1), 1–8, 2020.
 
[29]  Mayer, R. E., Fiorella, L., “Principles for Reducing Extraneous Processing in Multimedia Learning: Coherence, Signaling, Redundancy, Spatial Contiguity, and Temporal Contiguity Principles,” in Mayer, R. E., (Ed.), The Cambridge handbook of multimedia learning, Second edition; Cambridge handbooks in psychology; Cambridge University Press, Cambridge, 279–315, 2014.
 
[30]  Hamilton, E. R., Rosenberg, J. M., Akcaoglu, M., “The Substitution Augmentation Modification Redefinition (SAMR) Model: a Critical Review and Suggestions for its Use,” TechTrends 60 (5), 433–441, 2016.
 
[31]  ter Horst, N., Wilke, T., “Digital and differentiated learning in student laboratories: the concept of digitalchemlab,” CHEMKON, 29 (S1), 227–232, 2022.
 
[32]  ter Horst, N., Wilke, T., „Digital-differenzierende Lernmodule im Schülerlaborkontext: eine Pilotstudie,“ in Conference Proceedings DiCE-Tagung 2023, Thüringer Universitäts- und Landesbibliothek, in revision.