World Journal of Chemical Education. 2023, 11(3), 104-113
DOI: 10.12691/WJCE-11-3-14
Special Issue

Catalysis Revisited An Overview of Classical School Experiments and New Approaches for a Better Conceptual Understanding

Marco Reinmold1, and Julian Grob, Bastian Hohm, Arnim Lühken1

1Department of Chemistry Education, Goethe University Frankfurt, 60438 Frankfurt, Germany

Pub. Date: September 18, 2023
(This article belongs to the Special Issue Innovative experiments in chemistry didactics in Germany)

Cite this paper

Marco Reinmold and Julian Grob, Bastian Hohm, Arnim Lühken. Catalysis Revisited An Overview of Classical School Experiments and New Approaches for a Better Conceptual Understanding. World Journal of Chemical Education. 2023; 11(3):104-113. doi: 10.12691/WJCE-11-3-14

Abstract

The topics of kinetics and catalysis represent important contents in the chemical education of students and form fixed components of current school curricula and syllabi. Students need to acquire specific content knowledge and an adequate conceptual understanding of kinetics and catalysis in order to understand and evaluate chemical processes from nature and technology, especially in the current contexts of green and sustainable chemistry. To promote such an adequate conceptual understanding, this article presents five school experiments. The experiments allow high school students to acquire the concepts of kinetics and catalysis in a technically correct manner using kinetic measurements. By analyzing the recorded kinetic data using suitable spreadsheet programs, students leave the qualitative observation level and use mathematical models that allow them to draw conclusions about the underlying molecular processes. The use of spreadsheet programs underlines the interdisciplinary nature of this approach. The presented selection of experiments will provide students with an overview of all types of catalyses and their specific properties as well as common, even-numbered reaction orders. The newly acquired knowledge through the experiments enables the students to discuss economic and ecological problem situations and reflect on, and evaluate, courses of action in chemistry. The knowledge also enables students to develop adequate decision-making strategies and to communicate them properly, e.g., in the context of green and sustainable chemistry.

Keywords

Catalysis, kinetics, reaction order, homogeneous, heterogeneous, enzyme catalysis, photometry, BYOD, content knowledge, conceptual understanding, classical school experiments, new approaches, hands-on experiments, easy to perform

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Kerncurriculum Sekundarstufe I – Gymnasium (2021). Hessisches Kultusministerium. Online: https://kultusministerium.hessen.de/sites/kultusministerium.hessen.de/files/2021-06/kerncurriculum_chemie_gymnasium-1.pdf (accessed May 2023).
 
[2]  GCSE Chemistry (8462) (2019). AQA. Online: https://filestore.aqa.org.uk/resources/chemistry/specifications/AQA-8462-SP-2016.PDF (accessed May 2023).
 
[3]  MIDDLE SCHOOL CHEMISTRY (2019). American Chemical Society. https://www.middleschoolchemistry.com/download/ (accessed May 2023).
 
[4]  Fleischer, H.; Greiner, G.; Horlacher, B.; Maier, H.; Öttinger, M. Kinetics and Energetics of Decompositions of Hydrogen Peroxide. CHEMKON, 2022, 22(4), 157-163.
 
[5]  Barke, H.-D.; Daoutsali, E. The Car Catalyst – Students’ Misconceptions and How To Challenge Them. Review of Science, Mathematics and ICT Education, 2011, 5(2), 71-83.
 
[6]  Fleischer, H.; Greiner, G; Horlacher, B.; Maier, H.; Öttinger, M. NO_x Out of Diesel Engines – The Necessity of Thermodynamic Considerations. CHEMKON, 2022, 29 (6), 632-368.
 
[7]  Kerncurriculum gymnasiale Oberstufe - Chemie (2016). Hessisches Kultusministerium. https://kultusministerium.hessen.de/sites/kultusministerium.hessen.de/files/2021-07/kcgo-ch.pdf (accessed May 2023).
 
[8]  AS and A-Level Chemistry (2015). AQA. https://filestore.aqa.org.uk/resources/chemistry/specifications/AQA-7404-7405-SP-2015.PDF (accessed May 2023).
 
[9]  High School Core Concepts - American Chemical Society. American Chemical Society. https://www.acs.org/education/policies/middle-and-high-school-chemistry/core-concepts/high-school.html (accessed May 2023).
 
[10]  Kaiser, G. & Henn, H. Werner Blum und seine Beiträge zum Modellieren im Mathematikunterricht. Realitätsbezüge im Mathematikunterricht, 2015; 17 et sqq.
 
[11]  Holleman, A. F.; Wiberg, N.; Wiberg, E. Anorganische Chemie Grundlagen und Hauptgruppenele-mente, 103. ed.; Walter de Gruyter: Berlin/Boston, Germany, 2017; 649, 674.
 
[12]  ibid.; 614, 639-670.
 
[13]  ibid.; 612.
 
[14]  Fleischer, H.; Reinmold, M.; Salzner, J.; Lühken, A. Glucose in the Photobox – A New Method for Photometric Glucose Determination in Chemistry Classes by Using Digital Media. CHEMKON, 2023, 30(2); 82-89.
 
[15]  Rodriguez, M.; Salzner, J.; Lühken, A. Aspirin–so schnell wie nie?!; CHEMKON, 2018, 25(3); 104–111.
 
[16]  Hedinger GmbH & Co. KG, KATALYSATOR, 0,15% PD - 0,15% PT ERSATZ FÜR PLATINASBEST 50 G. https://www.der-hedinger.de/platin-3-palladium-katalysator-50-g-8471 (accessed May 2023).
 
[17]  SDS CAS: 567-13-5, A2B Chem LLC. https://www.a2bchem.com/567-13-5.html (accessed June 2023).
 
[18]  SDS CAS: 84-86-6, Merck. https://www.sigmaaldrich.com/DE/de/sds/aldrich/250619 (accessed June 2023).
 
[19]  Reschetilowski, W. Einführung in die Heterogene Katalyse; Springer-Verlag, 2015; 96, 113-114.
 
[20]  Atkins, P. & De Paula, J. Physical Chemistry; Macmillan, 2006; 927-928.
 
[21]  Merck KGaA, Bromelain aus Ananasstengel. https://www.sigmaaldrich.com/DE/de/product/sigma/b4882 (accessed May 2023).
 
[22]  Coêlho, D. F.; Saturnino, T. P.; Fernandes, F. F.; Mazzola, P. G.; Silveira, E.; Tambourgi, E. B. Azocasein Substrate for Determination of Proteolytic Activity: Reexamining a Traditional Method Using Bromelain Samples, BioMed Research International., 2016, vol. 2016; 1-5.
 
[23]  Martins, B. L. C.; Rescolino, R.; De Freitas Coêlho, D.; Espindola, F. S.; Zanchetta, B.; Tambourgi, E. B.; Silveira, E. Characterization of Bromelain from Ananas Comosus Agroindustrial Residues Purified by Ethanol Factional Precipitation. Chemical engineering transactions. 2014, 37; 781–786.