World Journal of Chemical Education. 2023, 11(3), 121-126
DOI: 10.12691/WJCE-11-3-16
Special Issue

School Experiments on Different Lithium Batteries

Dominique Rosenberg1,

1Department of Chemistry Didactics, Institute of Chemistry, University Rostock, Rostock, Germany

Pub. Date: October 07, 2023
(This article belongs to the Special Issue Innovative experiments in chemistry didactics in Germany)

Cite this paper

Dominique Rosenberg. School Experiments on Different Lithium Batteries. World Journal of Chemical Education. 2023; 11(3):121-126. doi: 10.12691/WJCE-11-3-16

Abstract

Lithium-ion based batteries are the most commonly used energy storage systems for electronic systems like tablets, smartphones, etc. in present times. Moreover, lithium ion-batteries are “the beacon of hope” for the automotive industry for the use in electric and hybrid cars and for the energy revolution to be applied as a short-time energy storage. However, other lithium-metal-based batteries are used in everyday life, such as lithium-manganese dioxide battery or lithium-iodine-battery. These types of batteries are much less known, but are used very frequently in everyday life. In this article simple experiments with lithium-batteries are presented.

Keywords

lithium batteries, lithium-manganese dioxide-batteries, lithium-pyrite-batteries, lithium-iodine-batteries

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Bieker, P., Winter, M., “Hochenergieakkumulatoren – Was braucht man für eine Super-Batterie?”, Chem. Unserer Zeit, 50. 26-33. 2016.
 
[2]  Bieker, P., Winter, M., “Lithium-Ionen-Technologie und was danach kommen könnte”, Chem. Unserer Zeit, 50. 172-186. 2016.
 
[3]  Scrosati, B., Hassoun, J., Sun, Y.-K., “Lithium-ion batteries. A look into the future”, Energy Environ Sci., 4. 3287-3295. 2011.
 
[4]  Dierks, W., Vennemann, H., “Lithium-Batterien”, ChemKon, 12 (1). 7-14. 2005.
 
[5]  Eichinger, G., Semrau, G., “Lithiumbatterien II”, Chem. Unserer Zeit, 24 (2). 90-96. 1990.
 
[6]  Jung, H. G., Hassoun, J., Park, J.-B., Sun, Y.-K., Scrosati, B., “An improved high-performance lithium-air battery”, nature chemistry, 4. 579-585. 2012.
 
[7]  Korthauer, R., Handbuch Lithium-Ionen-Batterien,Springer-Verlag Berlin, Heidelberg, 2013
 
[8]  Girishkummer, G., McCloskey, B., Luntz, A. C., Swanson, S., Wilcke, W., “Lithium-Air Battery: Promise and Challenges.”, Journal Phys. Chem. Lett., 1. 2193-2203. 2010.
 
[9]  Wu, B., Song, H., Zhou, J., Chen. X., “Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries”, Chem. Commun., 47. 8653-8655. 2011.
 
[10]  Parchmann, I., Schwarzer, S., Wilke, T., Tausch, M., Waitz, T., “Von Innovationen der Chemie zu innovativen Lernanlässen für den Chemieunterricht und darüber hinaus”, ChemKon, 24 (4). 161-164. 2017.
 
[11]  Hasselmann, M., Oetken, M., “Chemie und Energie – Elektrochemische Speichersysteme für die Zukunft: Experimente zum Themenfeld Lithium-Ionen-Akkumulatoren für die Schule und Hochschule – Teil 1: Theoretische Grundlagen”, Praxis der Naturwissenschaften, 62 (5). 19-24. 2013.
 
[12]  Hasselmann, M., Wagner, C., Oetken, M., “Lithiumetall-Akkumulatoren als elektrochemische Energiespeicher und die faszinierende Chemie eines ausgewählten Alkalimetalls”, ChemKon, 21 (4). 163-174. 2014.
 
[13]  Hasselmann, M., Oetken, M., “Elektrische Energie aus dem Kohlenstoffsandwich”, ChemKon, 18 (4). 160-172. 2011.
 
[14]  Rosenberg, D., Jansen, W., “Lithium-Sauerstoff-Batterie”, ChemKon, 27 (3). 136-141. 2020.
 
[15]  Manane, Y., Yazami, R., „Accurate state of charge assessment of lithium-manganese dioxide primary batteries“, Journal of Power Sources, 359, 422-426. 2017.
 
[16]  Tang, Y., Zheng, S., Xu, Y., Xiao, X., Xue, H., Pang, H., „Advanced batteries based on manganese dioxide and its composites“, Energy Storage Materials, 12, 284-309. 2018.
 
[17]  Lühken, A., Bader, H. J., “Hochtemperaturchemie im Haushaltsmirkowellenofen”, ChemKon, 8 (1). 7-14. 2001.
 
[18]  Thackeray, M. M., The Structural Stability of Transition Metall Oxide Insertation Elektrodes für Lithium Batteries, in Besenhard, J., Handbook of Battery Materials, Weinheim, 293-317, 1999
 
[19]  Holmes, C. F., “The Lithium/Iodine-Polyvinylpyridine Battery – 35 years of Succesful Clinical Use”, ECS Transactions, 6 (5). 1-7. 2007.
 
[20]  Wang, Y. L., Sun, Q. L., Zhao, Q. Q., Cao, J. S., Ye, H. S., “Rechargeable lithium/iodine battery with superior high-rate capability by using iodine–carbon composite as cathode”, Energy Environ. Sci., 4, 3947-3950. 2011.