World Journal of Chemical Education. 2023, 11(3), 31-37
DOI: 10.12691/WJCE-11-3-3
Special Issue

Catalytic Decomposition of Hydrogen Peroxide by Molybdate - Colourful Insights into the Essence of Catalysis

Lukas Zell1, , Dennis Lüke1 and Marco Oetken1

1Institut für Chemie, Physik, Technik und ihre Didaktiken, Pädagogische Hochschule Freiburg, Freiburg, Germany

Pub. Date: August 21, 2023
(This article belongs to the Special Issue Innovative experiments in chemistry didactics in Germany)

Cite this paper

Lukas Zell, Dennis Lüke and Marco Oetken. Catalytic Decomposition of Hydrogen Peroxide by Molybdate - Colourful Insights into the Essence of Catalysis. World Journal of Chemical Education. 2023; 11(3):31-37. doi: 10.12691/WJCE-11-3-3

Abstract

The use of catalysts in chemistry and biology is ubiquitous. To help students understand the nature of catalysis, several experiments on catalysis are used in schools. These all have one drawback - the cause of the lowered activation energy remains unknown. In this article we present the catalytic decomposition of hydrogen peroxide using molybdate ions. This model catalyst provides a detailed insight into the reaction process through two coloured intermediates, allowing direct phenomenological conclusions to be drawn about the alternative reaction pathway. This is the true reason for the reduced activation energy.

Keywords

Catalysis, hydrogen peroxide, molybdate, chromate, alternative reaction pathway

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Holleman, A. F., Wiberg, E., Wiberg, N., Lehrbuch der anorganischen Chemie, W. De Gruyter, Berlin, 2007.
 
[2]  Vollhardt, K. P. C., Schore, N. E., Organische Chemie, Wiley-VCH, Weinheim, 2009.
 
[3]  Alberts, B., Lehrbuch der Molekularen Zellbiologie, Wiley-VCH Verlag, Weinheim, Germany, 2021.
 
[4]  Rothenberg, G., Catalysis,Concepts and green applications, Wiley-VCH, Weinheim, Germany, 2008.
 
[5]  Jamtveit, B., Meakin, P., Growth, Dissolution and Pattern Formation in Geosystems, Springer Netherlands, Dordrecht, 1999.
 
[6]  Jansen, W., Ralle, B., Peper, R., Reaktionskinetik und chemisches Gleichgewicht. Reaktionsgeschwindigkeit, Aulis Verlag in Friedrich Verlag, Seelze, Germany, 1984.
 
[7]  O'Brien, T. J., Ceryak, S., Patierno, S. R., "Complexities of chromium carcinogenesis: role of cellular response, repair and recovery mechanisms", Mutation research ,533, 2003.
 
[8]  Deutsche Gesetzliche Unfallversicherung, "Kaliumchromat", https://degintu.dguv.de/ [accessed 14.12.22].
 
[9]  Mendel, R. R., Kruse, T., "Cell biology of molybdenum in plants and humans", Biochimica et biophysica acta ,1823, 2012.
 
[10]  Deutsche Gesetzliche Unfallversicherung, "Natriummolybdat", https://gestis.dguv.de/data?name=122441 [accessed 15.12.22].
 
[11]  Deutsche Gesetzliche Unfallversicherung, "Natriumchlorid", https://gestis.dguv.de/data?name=001330 [accessed 15.12.22].
 
[12]  Dickman, M. H., Pope, M. T., "Peroxo and Superoxo Complexes of Chromium, Molybdenum, and Tungsten", Chem. Rev. ,94, 1994.
 
[13]  Nardello, V., Marko, J., Vermeersch, G., Aubry, J. M., "90Mo NMR and kinetic studies of peroxomolybdic intermediates involved in the catalytic disproportionation of hydrogen peroxide by molybdate ions", Inorg. Chem. ,34, 1995.
 
[14]  Grzywa, M., Łasocha, W., Rutkowska-Żbik, D., "Structural investigation of tetraperoxo complexes of Mo(VI) and W(VI)", Journal of Solid State Chemistry ,182, 2009.
 
[15]  Lu, C.-S., Hughes, E. W., Giguère, P. A., "The Crystal Structure of the Urea—Hydrogen Peroxide Addition Compound CO(NH 2 ) 2 ·H 2 O 2", J. Am. Chem. Soc. ,63, 1941.
 
[16]  Lide, D. R. (Hrsg.), 1996, CRC handbook of chemistry and physics, 76. Aufl., CRC Press, Boca Raton.
 
[17]  Fleischer, H., Greiner, G., Horlacher, B., Maier, H., Öttinger, M., "Kinetics and energetics of decomposition of hydrogen peroxide", Chemkon ,29, 2022.