World Journal of Chemical Education. 2023, 11(3), 54-59
DOI: 10.12691/WJCE-11-3-6
Special Issue

From Titanium Foil to Gas Sensor: Nanoporous Anodic Titania as a Functional Material

Edwin Bogdan1, Christoph Weidmann1 and Thomas Waitz1,

1Department of Chemistry Education, Georg-August-University, Göttingen, Germany

Pub. Date: August 22, 2023
(This article belongs to the Special Issue Innovative experiments in chemistry didactics in Germany)

Cite this paper

Edwin Bogdan, Christoph Weidmann and Thomas Waitz. From Titanium Foil to Gas Sensor: Nanoporous Anodic Titania as a Functional Material. World Journal of Chemical Education. 2023; 11(3):54-59. doi: 10.12691/WJCE-11-3-6

Abstract

We present a gas sensor using nanoporous titanium dioxide which is fabricated by anodic oxidation of a titanium foil. The process is easy to handle, can be carried out at low cost and the sensor response to reducing gases can be measured using a cheap digital multimeter. In contrast to the most gas sensors, no commercially available sensor substrate is required. The band model for semiconductors and a model of ionosorption provides an explanation for the working principle of the gas sensor on particle level. Several experimental approaches for upper-secondary chemistry class are presented.

Keywords

gas sensor, titanium dioxide, band model

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Seiyama, T.; Kato, A.; Fujiishi, K. and Nagatani, M., "A New Detector for Gaseous Components Using Semiconductive Thin Films," Analytical Chemistry, 34(11),1502–1503, August 1962. [Online].
 
[2]  Ramanavicius, S.; Jagminas, A. and Ramanavicius, A., "Gas Sensors Based on Titanium Oxides (Review)," Coatings, 12(5),699, May 2019. [Online].
 
[3]  Malallah Rzaij, J. and Mohsen Abass, A., "Review on: TiO2 Thin Film as a Metal Oxide Gas Sensor," Journal of Chemical Reviews, 2(2),114–121, February 2020. [Online].
 
[4]  Elger, A.-K. and Hess, C., "Elucidating the Mechanism of Working SnO2 Gas Sensors Using Combined Operando UV/Vis, Raman, and IR Spectroscopy," Angewandte Chemie International Edition, 58(42),15057–15061, September 2019 [Online].
 
[5]  Wang, Y.; Zhou, Y.; Meng, C.; Gao, Z.; Cao, X.; Li, X.; Xu, L.; Zhu, W.; Peng, X.; Zhang, B.; Lin, Y. and Liu, L., "A high-response ethanol gas sensor based on one-dimensional TiO2/V2O5 branched nanoheterostructures," Nanotechnology, 27(42),425503, September 2016. [Online].
 
[6]  Wang, Y.; Liu, L.; Meng, C.; Zhou, Y.; Gao, Z.; Li, X.; Cao, X.; Xu, L. and Zhu, W., "A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures," Scientific Reports, 6(1), 33092, September 2016. [Online].
 
[7]  Zhang, K.; Zhang, W.; Shen, Y. and Li, Y., "Low-cost preparation of ultra-high sensitivity Ce doped SnO2 ethanol gas sensor," Materials Letters, 335, 133839, March 2023. [Online].
 
[8]  Liu, H.; Zhu, D.; Liu, W.; Miao, T.; Chen, J.; Cheng, B.; Qin, H. and Hu, J., "Study on Gas Sensing Characteristics of LaFeO3 Sensor Under Multi-Wavelength Light Illumination," SSRN Electronic Journal, February 2023. [Online].
 
[9]  Gakhar, T. and Hazra, A., “Oxygen vacancy modulation of titania nanotubes by cathodic polarization and chemical reduction routes for efficient detection of volatile organic compounds.,” Nanoscale 12(16), 9082, March 2020. [Online].
 
[10]  Bretschneider, U. and Harreis, H., "Abgasemissionen von Kraftfahrzeugen mit einem Gassensor - qualitative Untersuchungen [Exhaust gas emissions of motor vehicles with a gas sensor – qualitative investigations]," Praxis der Naturwissenschaften –Physik in der Schule, 38 (3), 32–39, April 1989.
 
[11]  Zeiter, W., "Sauerstoffproduktion von Pflanzen. Elektronischer Gassensor zur Messung [Oxygen production by plants. Electronic gas sensor for measurement]," Praxis der Naturwissenschaften – Biologie in der Schule, 42 (3), 22–24, April 1993.
 
[12]  Waitz, T. and Tiemann, M., "'Ich rieche was, was du nicht riechst': Halbleitende Metalloxide als Gassensoren im Chemieunterricht [‚I smell something you cannot smell‘: Semiconductive metal oxide as gas sensors for chemistry class]," Chemkon, 16(4),183–186. January 2009. [Online].
 
[13]  Wielage, B.; Alisch, G.; Lampke, T. and Nickel, D., "Anodizing – A Key for Surface Treatment of Aluminium," Key Engineering Materials, 384, 263–281, June 2008. [Online].
 
[14]  İzmir, M. and Ercan, B., "Anodization of titanium alloys for orthopedic applications," Frontiers of Chemical Science and Engineering, 13(1), 28–45, November 2018. [Online].
 
[15]  Lanfermann, P.; Weidmann, C.; Waitz, S.; Maaß, M.C. and Waitz, T., "Preparation of nano titanium dioxide coatings by anodic oxidation: beautifully colorful and functional," Chemkon, 29(8), 225–233. September 2022. [Online].
 
[16]  Hazra, A.; Dutta, K.; Bhowmik, B.; Chattopadhyay, P.P. and Bhattacharyya, P., "Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array," Applied Physics Letters, 105(8), 81604, August 2014. [Online].
 
[17]  Berger, S., Selbstorganisierte nanostrukturierte anodische Oxidschichten auf Titan und TiAl-Legierungen: Morphologie, Wachstum und Dünnschichtanodisation [Self-assembled nanostructured anodic oxide films on titanium and TiAl alloys: Morphology, growth and thin film anodization], dissertation, Erlangen, 2009.
 
[18]  Macak, J.M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S. and Schmuki, P., "TiO2 nanotubes: Self-organized electrochemical formation, properties and applications," Current Opinion in Solid State and Materials Science, 11(1-2),3–18. [Online].
 
[19]  Yamazoe, N. and Shimanoe, K., "Receptor Function and Response of Semiconductor Gas Sensor," Journal of Sensors, 2009, 1–21, July 2009. [Online].
 
[20]  Oh, H.-J.; Kim, I.-K.; Jang, K.-W.; Lee, J.-H.; Lee, S. and Chi, C.-S., “Influence of electrolyte and anodic potentials on morphology of titania nanotubes,” Metals and Materials International, 18 (4), 673–677. February 2012 [Online].
 
[21]  Xiong, L.-B.; Li, J.-L.; Yang, B. and Yu, Y., "Ti3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application," Journal of Nanomaterials, 2012, 1–13, November 2011. [Online].
 
[22]  Chen, Y.; Li, M.; Yan, W.; Zhuang, X.; Ng, K.W. and Cheng, X., "Sensitive and Low-Power Metal Oxide Gas Sensors with a Low-Cost Microelectromechanical Heater," ACS Omega, 6(2), 1216–1222, January 2021. [Online].