World Journal of Chemical Education. 2023, 11(4), 141-148
DOI: 10.12691/WJCE-11-4-3
Original Research

Visualizing the Origin of the Exchange Energy

Surusch Djalali1, 2, Amitabh Banerji3, Martin Kleinschmidt4, Peter Gilch1, and Lena Halbrügge3, 5,

1Institut für Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany

2Present address: Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany

3Institut für Chemiedidaktik, Universität Potsdam, Didaktik der Chemie, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany

4Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany

5Present address: Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany

Pub. Date: December 10, 2023

Cite this paper

Surusch Djalali, Amitabh Banerji, Martin Kleinschmidt, Peter Gilch and Lena Halbrügge. Visualizing the Origin of the Exchange Energy. World Journal of Chemical Education. 2023; 11(4):141-148. doi: 10.12691/WJCE-11-4-3

Abstract

Atoms and molecules with two unpaired electrons can adopt singlet and triplet spin multiplicities. The implications of this are far reaching. For instance, the properties of molecular oxygen with its triplet ground state cannot be understood if this is not considered. In the design of emitters for OLEDs, the energy gap between singlet and triplet excitations is of utmost importance. This energy gap equals twice the exchange energy. Because of this relevance, the exchange energy is treated in textbooks and courses on physical and quantum chemistry. The treatments are commonly based on the quantum mechanical formalism and leave the students wondering why the exchange energy is non-zero. Here, the formalism is briefly re-iterated. Then wavefunctions for singlet and triplet states with identical configurations are visualized relying on the well-known particle-in-a-box model. The visualization shows that in the triplet state the electrons “automatically” avoid each other. This lowers the triplet energy compared to the singlet one. Some short comings of this didactic approach are also discussed.

Keywords

upper-division undergraduate, chemistry bachelor programs in Europe, physical chemistry, quantum chemistry, photochemistry, exchange energy, particle-in-a-box model

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Carlton, T. S., Why the Lower-Energy Term of Singlet Dioxygen Has a Doubly Occupied π* Orbital. Journal of Chemical Education 2006, 83 (3), 477.
 
[2]  Klán, P.; Wirz, J., Photochemistry of Organic Compounds. From Concepts to Practice. Wiley: Chichester, 2009.
 
[3]  Turro, N. J.; Ramamurthy, V.; Scaiano, J. C., Modern molecular photochemistry of organic molecules. University Science Books: Sausalito, Calif., 2010.
 
[4]  Borden, W. T.; Hoffmann, R.; Stuyver, T.; Chen, B., Dioxygen: What Makes This Triplet Diradical Kinetically Persistent? Journal of American Chemical Society 2017, 139 (26), 9010-9018.
 
[5]  DeRosa, M. C.; Crutchley, R. J., Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews 2002, 233-234, 351-371.
 
[6]  Ghogare, A. A.; Greer, A., Using Singlet Oxygen to Synthesize Natural Products and Drugs. Chemical Reviews 2016, 116 (17), 9994-10034.
 
[7]  Björn, L. O., Photobiology: The science of light and life. Springer: 2015.
 
[8]  Schreier, W. J.; Gilch, P.; Zinth, W., Early events of DNA photodamage. Annual review of physical chemistry 2015, 66, 497-519.
 
[9]  Liu, Y. C.; Li, C. S.; Ren, Z. J.; Yan, S. K.; Bryce, M. R., All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nature Reviews Materials 2018, 3 (4), 20.
 
[10]  Thejo Kalyani, N.; Dhoble, S. J., Organic light emitting diodes: Energy saving lighting technology—A review. Renewable and Sustainable Energy Reviews 2012, 16 (5), 2696-2723.
 
[11]  Torres Ziegenbein, C.; Fröbel, S.; Glöß, M.; Nobuyasu, R. S.; Data, P.; Monkman, A.; Gilch, P., Triplet Harvesting with a Simple Aromatic Carbonyl. ChemPhysChem 2017, 18 (17), 2314–2317.
 
[12]  Parson, W. W., Modern Optical Spectroscopy, With Exercises and Examples from Biophysics and Biochemistry, Student Edition. Springer: Dordrecht, Heidelberg, London, New York, 2009.
 
[13]  Atkins, P. W.; De Paula, J., Atkins' Physical chemistry. Ninth Edition. Oxford University Press: Oxford; New York, 2010.
 
[14]  Levine, I. N., Quantum Chemistry, 6th Edition. Pearson 2009.
 
[15]  Pinto, G., The Bologna Process and Its Impact on University-Level Chemical Education in Europe. Journal of Chemical Education 2010, 87 (11), 1176-1182.
 
[16]  McMillin, D. R., The Pauli Principle: Effects on the Wave Function Seen through the Lens of Orbital Overlap. Journal of Chemical Education 2018, 95 (9), 1587-1591.
 
[17]  Marmorino, M. G., Electron Correlation in the Singlet and Triplet States of the Atomic 2px12py1 Configuration. Journal of Chemical Education 2019, 96 (2), 390-392.
 
[18]  Schrödinger, E., Was ist ein Naturgesetz? Beiträge zum naturwissenschaftlichen Weltbild. 7. Auflage ed.; De Gruyter Oldenbourg: 2012.
 
[19]  Kuhn, H., A Quantum‐Mechanical Theory of Light Absorption of Organic Dyes and Similar Compounds. The Journal of Chemical Physics 1949, 17 (12), 1198-1212.
 
[20]  Hudson, B.; Kohler, B., Linear Polyene Electronic Structure and Spectroscopy. Annual Review of Physical Chemistry 1974, 25 (1), 437-460.
 
[21]  Rubio, A.; Sánchez-Portal, D.; Artacho, E.; Ordejón, P.; Soler, J. M., Electronic States in a Finite Carbon Nanotube: A One-Dimensional Quantum Box. Physical Review Letters 1999, 82 (17), 3520-3523.
 
[22]  Szabo, A.; Ostlund, N. S., Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications: 1996.