World Journal of Chemical Education. 2024, 12(1), 30-38
DOI: 10.12691/WJCE-12-1-5
Original Research

Combining Optical and Raman Spectroscopy with Electrochemistry: The Ferricyanide and Ferrocyanide System - Experiments for Undergraduates

A. Habekost1,

1University of Education Ludwigsburg, Ludwigsburg, Germany

Pub. Date: March 15, 2024

Cite this paper

A. Habekost. Combining Optical and Raman Spectroscopy with Electrochemistry: The Ferricyanide and Ferrocyanide System - Experiments for Undergraduates. World Journal of Chemical Education. 2024; 12(1):30-38. doi: 10.12691/WJCE-12-1-5

Abstract

Ferricyanide and ferrocyanide are often used in undergraduate education to experimentally investigate the redox behaviour, the different thermodynamic stability and the formation of Prussian Blue. Surface-enhanced Raman scattering (SERS) on colloids is intensively studied in chemistry, but the didactic implications in terms of developing easy-to-perform experiments have not been intensively discussed. These experiments show the spectroelectrochemical behaviour (optical and Raman) of the redox system on gold and silver electrodes at different potentials. The SERS experiments show that the Raman modes are changed due to the strong adsorption on the electrochemically prepared Au and Ag surfaces. Prussian blue can be easily prepared electrochemically.

Keywords

(Surface enhanced) Raman Spectroscopy, absorptovoltammetry

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  M. Fleischmann, P.J. Hendra, A.J. McQuillian, Raman spectra from electrode surfaces , J. Chem Soc. Chem Commun. 1973, 80.
 
[2]  M. Fleischmann, P.J. Hendra, A.J. McQuillian, Raman Spectra of Pyridine Adsorbed at a Silver Electrode, Chem Phys. Lett. 1974, 26,163-166.
 
[3]  M. Fleischmann, P.R. Graves, J. Robinson, The Raman Spectroscopy of the Ferricyanide/Ferrocyanide System at Gold, b-Palladium Hydride and Platinum Electrodes, J. Electroanal. Chem. 1985, 182, 87-98.
 
[4]  G. Herzberg, Molecular Spectra and Molecular Structure. II Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrant Reinhold Company, New York, 1945, p.122.
 
[5]  B.H. Loo, Y.G. Lee, E.J. Liang, W. Kiefer, Surface-enhanced Raman scattering from ferrocyanide and ferricyanide ions adsorbed on silver and copper colloids, Chem. Phys. Lett. 1998, 297, 83-89.
 
[6]  W.P. Griffith, G.T. Turner, Raman Spectra and Vibrational Assignments of Hexacyano-complexes, J. Chem. Soc. (A), 1970, 858-862.
 
[7]  D. Ibanez, J. Garoz-Ruiz, A. Heraz, A. Colina, Simultaneous UV-Visible Absorption and Raman Spectroelectrochemistry, Anal. Chem. 2016, 88, 8210-8217.
 
[8]  R. Moldovan, E. Vereshchagina, K. Milenko, B.C. Iacob, A.E. Bodoki, A. Falamas, N. Tosa, C.M. Muntean, C. Farcau, E. Bodoki, Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical aplications, Anal. Chim. Acta 2023, 1209, 339250, 1-25.
 
[9]  D. Martin-Yerga, A. Perez-Junquera, M.B. Gonzalez-Garcia, J.V. Perales-Rondon, A. Heras, A. Colina, D. Hernandez.Santos, P. Fanjul.Bolado, Quantitative Raman spectroelectrochemistry using silver screen-printed electrodes, Electrochim. Acta,2018, 264, 183-190.
 
[10]  J. Lopez-Palacios, A. Heraz, A. Colina, V. Ruiz, Bidimensional spectroelectrochemical study on electrogeneration of soluble Prussian Blue from hexacyanoferrat (II)solution, Electrochim. Acta (2004), 49, 1027-1033.
 
[11]  L.H. Oakley, D.M. Fabian, H.E. Mayhew, S.A. Svoboda, K.L. Wustholz, Pretreatment Strategies for SERS Analysis of Indigo and Prussian Blue in Aged Painted Surfaces, Anal. Chem. (2012), 84, 8006-8012.