World Journal of Chemical Education. 2014, 2(3), 39-41
DOI: 10.12691/WJCE-2-3-2
Case Report

Association Behavior of Mono, Di and Tri-hydric Alcohols with Three Carbon Skeleton in a Straight Chain

R. Sanjeev1, V. Jagannadham2, , Adam A. Skelton1 and Arijit Das3

1Department of Pharmacy, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa

2Department of Chemistry, Osmania University, Hyderabad, India

3Department of Chemistry, Ramthakur College, Agartala, Tripura, India

Pub. Date: July 31, 2014

Cite this paper

R. Sanjeev, V. Jagannadham, Adam A. Skelton and Arijit Das. Association Behavior of Mono, Di and Tri-hydric Alcohols with Three Carbon Skeleton in a Straight Chain. World Journal of Chemical Education. 2014; 2(3):39-41. doi: 10.12691/WJCE-2-3-2

Abstract

Association behavior of mono, di and tri-hydric alcohols having three carbon skeleton in a straight chain was studied based on surface tension (γ) data, EÖTVÖS constants (k), order of association (x), hydrogen bond acceptor (Ha)-donor (Hd) counts and Trouton’s rule. It is to be understood from the title that alcohols used were 1-propanol, 2-propanol, 1,2-propanediol, 1,3-propanediol and glycerol.

Keywords

surface tension, associative behavior, EÖTVÖS constants, 1-propanol, 2-propanol, 1,2-propanediol, 1,3-propanediol and glycerol

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  W. S. Hendrixson, Z. Anorg. Allgem. Chem., 13, 6 (1897).
 
[2]  A. K. M. Shamsul Huq and S. A. K. Lodhi, J. Phy. Chem., 70, 1354 (1966).
 
[3]  E. A. Moelwyn-Hughes, J. Chem. Soc., 850 (1940).
 
[4]  M. Davies, P. Jones, D. Patnaik and Moelwyn-Hughes, J. Chem. Soc., 1249 (1951).
 
[5]  Ramsay, W., Shields, J., The Molecular Complexity of Liquids, J. Chem. Soc., Trans., 63, 1089-1109, 1893, and Samuel Sugden, J. Chem. Soc., Trans., 1924,125, 32-41.
 
[6]  Eötvös, Ann. der Physik., 27, 448 (1886): Cited in: Palit, Santi R. (1956). “Thermodynamic Interpretation of the Eötvös Constant”, Nature 177 (4521): 1180 1180.Bibcode:1956 Natur.177.1180P.
 
[7]  Joseph J. Jasper, J. Phys. Chem. Ref. Data, Vol. 1, 1972, page 841.
 
[8]  Farhad Gharagheizi, Ali Eslamimanesh, Behnam Tirandazi, Amir H. Mohammadib, Dominique Richon, Chemical Engineering Science, 66 (2011) 4991-5023.
 
[9]  Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. Url: http://old.iupac.org/publications/books/author/majer.html
 
[10]  M. J. Timmerman and M. Hennaut-Roland, J. Chim. Phys., 27, 401 (1930).
 
[11]  P. Walden, Z. Physik. Chem., 75, 555 (1910).
 
[12]  Elements of Physical Chemistry by S Glasstone and D. Lewis; Second Edition; Published by S. G, Wasani for the Macmillan company of India, 1983 pp-146-147.
 
[13]  I. Yu and M. Nagaoka, Chem. Phys. Lett. 388, 316-321 (2004).
 
[14]  Trouton, F. (1884). “IV. On molecular latent heat”, Philosophical Magazine Series 5 18 (110): 54-57.