World Journal of Chemical Education. 2015, 3(5), 115-119
DOI: 10.12691/WJCE-3-5-2
Original Research

Cyclic Voltammetry - A Versatile Electrochemical Method Investigating Electron Transfer Processes

N. Aristov1 and A. Habekost1,

1Department of Chemistry, University of Education Ludwigsburg, Reuteallee, Ludwigsburg, Germany

Pub. Date: September 11, 2015

Cite this paper

N. Aristov and A. Habekost. Cyclic Voltammetry - A Versatile Electrochemical Method Investigating Electron Transfer Processes. World Journal of Chemical Education. 2015; 3(5):115-119. doi: 10.12691/WJCE-3-5-2

Abstract

Three experiments are presented to introduce students to the capabilities of cyclic voltammetry (CV) for finding redox couples suitable for, e.g., battery development. The systems chosen involve only one-electron transfer, but already display complex behaviours that can be delineated with CV as being reversible, quasi-reversible, or irreversible, and the rate constants for the electron transfer can be estimated by the theory of Nicholson and Shain.

Keywords

third-year undergraduate, analytical, electrochemistry, hands-on learning/manipulatives, laboratory instructions

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Matsuda, H., Ayabe, Y., The theory of the cathode-ray polarography of Randles-Sevcik, Zeitschrift fuer Elektrochmie and Angewandte Physikalische Chemie. 1955, 59, 494-503.
 
[2]  Nicholson, R. S., Shain, I., Theory of Stationary Electrode Polarography Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems, Adv. Anal. Chem. 1964, 36(4), 706-723.
 
[3]  Bard, A. J., Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications (Chemistry), Wiley and Sons, 2001.
 
[4]  Gosser, Jr, D. K., Cyclic Voltammetry. Simulation and Analysis of Reaction Mechanism, VCH, Weinheim, Germany, 1993.
 
[5]  Fisher, A. C., Electrode Dymanics, Oxford Science Publication, New York, 2009.
 
[6]  Brett, C. M. A., Oliveira Brett, A. M., Electroanalysis, Oxford Science Publication, New York, 2005.
 
[7]  Compton, R. G., Banks, C. E., Understanding Voltammetry, 2nd Edition, Imperial College Press, 2011.
 
[8]  Mabbott, G. A., An Introduction to Cyclic Voltammetry, J. Chem. Educ. 1983, 60, 607-702.
 
[9]  Kissinger, P. T., Heineman, W. R., Cyclic Voltammetry, J. Chem. Educ. 1983, 60, 702-706.
 
[10]  van Benschoten, J. J., Lewis, Y. T., Heineman, W. R., Roston, D. A., Kissinger, P. T., Cyclic Voltammetry Experiments, J. Chem. Educ. 1983, 60, 772-776.
 
[11]  Heinze, J., Cyclovoltammetrie – Die “Spektroskopie” des Elektrochemikers, Angewandte Chemie. 1984, 96, 823-840.
 
[12]  Lim, H.S, Barclay, D.J., Anson, F.C., Formal potentials and cyclic voltammetry of some ruthenium-ammine complexes, Inorg. Chem., 1972, 11, 1460-1466.
 
[13]  Rock, P.A., The Standard Oxidation Potential of the Ferrocyanide-Ferricyanide Electrode at 25°C and the Entropy of Ferrocyanide Ion, J. Phys. Chem. 1966, 70, 576-580.
 
[14]  Beiginejad, H., Nematollahi, D., Farmaghani, F., Electrochemical oxidation of some aminophenols in various pHs, J. Electrochem. Soc. 2013, 160, 41-46.
 
[15]  Long, S., Silvester, D. S., Barnes, A. S., Rees, N. V., Aldous, L., Hardacre, C., Compton, R. G., Oxidation of several p-phenylenediamines in room temperature ionic liquids: estimation of transport and electrode kinetic parameters, J. Phys. Chem. C. 2008, 112, 6993-7000.
 
[16]  Moressi, M. B., Zon, M. A., Fernandez, H., The determination of thermodynamic and heterogeneous kinetic parameters of the TMPD/TMPD•+ redox couple in tetrahydrofuran and n-butanol using ultramicroelectrodes. Quasi steady-state voltammetry, J. Braz. Chem. Soc. 1994, 5, 167-72.