World Journal of Chemical Education. 2016, 4(1), 4-12
DOI: 10.12691/WJCE-4-1-2
Original Research

Experimental Investigations of Alkaline Silver-zinc and Copper-zinc Batteries

A. Habekost1,

1Department of Chemistry, University of Education, Reuteallee 46, D-71634 Ludwigsburg, Germany

Pub. Date: January 06, 2016

Cite this paper

A. Habekost. Experimental Investigations of Alkaline Silver-zinc and Copper-zinc Batteries. World Journal of Chemical Education. 2016; 4(1):4-12. doi: 10.12691/WJCE-4-1-2

Abstract

Batteries are important issues in electrochemistry and in electrochemistry lessons. But nevertheless, the electrode processes in batteries are not quite easy to understand.One of the didactic benefits of the investigations of alkaline silver-zinc and copper-zinc batteries might be the chance to directly observethe changes on the electrode surface and the simple way to measure the electrode processes. These electrode processes are intensively examined so that they can be explained well and described clearly.In this paper we will present several experiments to investigate these two battery systems: Cyclic voltammetry is used to identify the electrode processes, and on the basis ofcharging and discharging curves one can estimate the efficiency of the batteries. Furthermore, the reflection of a laser beam onto a surfaceis an easy means to correlate the results with the electrochemical changes of the electrode.

Keywords

Third-Year Undergraduate, analytical, electrochemistry, batteries, Hands-on Learning/Manipulatives

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Daniel, C., Besenhardt J. O., (Eds), Handbook of Battery Materials, Vol.1 and 2, Wiley, Weinheim, 2011.
 
[2]  Glöckner, W., Jansen, W., Weissenhorn, R. G. (Eds.), Handbuch der experimentellen Chemie. Sekundarbereich II. Band 6: Elektrochemie, Aulis Verlag, Deubner & CoKg, Köln, 1994.
 
[3]  E.g. Hasselmann, M., Oetken, M., Elektrische Energie aus dem Kohlenstoffsandwich -Lithium-Ionen Akkumulatoren auf Basis redoxamphoterer Graphitinterkalationselektroden, Chemkon 3, 160-172, 2011.
 
[4]  Hasselmann, M., Friedrich, J., Klaus, M., Wagner, C., Moessner, B., Quarthal, D., Oetken, M., Chemie und Energie, Elektrochemischer Speichersysteme für die Zukunft, PdN- ChiS 61, 876-881, 2014.
 
[5]  M. Hasselmann, M. Oetken, Chemie und Energie Elektrochemische Speichersysteme für die Zukunft - Teil 2: Der Graphitminen-Akkumulator, PdN-ChiS 62, 33-43, 2013.
 
[6]  Aristov, N., Habekost, A., Cyclic voltammetry- A versatile electrochemical method investigating electron transfer processes, World J. Chem. Educ., 3, 115-119, 2015
 
[7]  Compton, B. R. G., Banks, C. E., Understanding Voltammetry, 2nd Edition, Imperial College Press, 2011.
 
[8]  Lorimer, J. P., Mason, T. J., Plattes, M., Walton, D. J., Passivation phenomena during sonovoltammetric studies on copper in strongly alkaline solutions, J. Electroanal. Chem., 568, 379- 390, 2004.
 
[9]  https://scifinder.cas.org/scifinder/view/scifinder/scifinderExplore.jsf
 
[10]  Jakes, P. J., Wong, T-L., Humphrey, T., Carlson, J.R., Cromer, D., Battery management for optimizing battery and service life, US 8244312 B2 20120814, U.S., 2012.
 
[11]  Stonehard, P., Portante, F. P., Potentiodynamic examination of surface processes and kinetic for the Ag2O/AgO/OH- system, Electrochim. Acta 13, 1805-1814, 1968.
 
[12]  Speiser, B., Elektroanalytische Methoden I: Elektrodenreaktionen und Chronoamperometrie, ChiuZ 15, 21-26, 1981.
 
[13]  Pound, B. G., Macdonald, D. D., Tomlinson, J. W., The electrochemistry of silver in KOH at elevated temperatures - II. Cyclic voltammetry and galvanostatic charging studies, Electrochim. Acta 25, 563-573, 1980.
 
[14]  Pound, B. G., Macdonald, D. D., Tomlinson, J. W., The electrochemistry of silver in KOH at elevatedv temperatures - III. Potentiostatic studies, Electrochim. Acta 25, 1293-1296, 1980.
 
[15]  Lazarescu, V., Radovici, O., Vass, M., Voltametric studies on anodic oxidation of silver, Electrochim. Acta. 30, 1407-1408, 1985.
 
[16]  Giles, R. D., Harrison, J. A., Potentiodynamic sweep measurement of the anodic oxidation of silver in alkaline solutions, Electroanal. Chem. and Interfac. Electrochem. 27, 161-163, 1970.
 
[17]  Popkirov, G. S., Burmeiser, M., Schindler, R. N., Electrode potential redistribution during silver oxidation and reduction in alkaline solution, J. Electroanal. Chem. 380, 249-254, 1995.
 
[18]  Droog, J. M. M., Huisman, F., Electrochemical formation and reduction of silver oxides in alkaline media, J. Electroanal. Chem. and Interfac. Electrochem. 115, 211-224, 1980.
 
[19]  McMillan, J. A., Magnetic properties and crystalline structure of AgO, J. Inorg. Nucl. Chem. 13, 28-31, 1960.
 
[20]  Servian, J. L., Buenfama, H. D., On the structure of AgO, Inorg. Nucl. Chem. Lett. 5, 337-338, 1969.
 
[21]  Yvon, K., Bezinge, A., Tissot, P., Fischer, P., Structure and magnetic properties of tetragonal silver(I,III) oxide, AgO, J. Solid State Chem. 65, 225-230, 1986.
 
[22]  E.g.. Hollemann, Wiberg, Lehrbuch der Anorganischen Chemie, 91. - 100. Auflage, Walter de Gruyter, Berlin, S. 1017, 1985.
 
[23]  Allen, A., The silver oxides, in: Gutmann, J. A., Friend, F., Proceedings of the first Australian conference on Electrochemistry, Pergamon Press, Oxford, 72-88, 1965.
 
[24]  Dierkse, T. P., The oxidation of the silver electrode in alkaline solutions, J. Electrochem. Soc. 106, 920-925, 1959.
 
[25]  Dirkse, T. P., The AgO‐Ag2O  Electrode in Alkaline Solution, Jour. Electrochem. Soc. 109, 173-177, 1962.
 
[26]  Dirkse, T. P., The cathodic behavior of AgO in alkaline solutions, Jour. Electrochem. Soc. 107, 859-864, 1960.
 
[27]  Luther, R., Pokorny, F., Über das elektrochemische Verhalten des Silbers und seiner Oxyde, Zeitschrift für Anorganische Chemie 57, 290-310, 1908.
 
[28]  https://de.wikipedia.org/wiki/Akkumulator#Energiedichte_und_Wirkungsgrad (25.8.15, 4 pm).
 
[29]  Schoop, P., Hat der alkalische Zink-Kupfer-Akkumulator Aussicht auf baldige praktische Verwendung im Trambetrieb?, Zeitschrift für Elektrotechnik und Elektrochemie, 1, 131-134, 1894.
 
[30]  Leckie, H. P., Anodic polarization behavior, J. Electrochem. Soc., 117, 1478-1483, 1970.
 
[31]  Ambrose, J., Barradas, R. G., Shoesmith, D. W., Investigations of copper on aqueous alkaline solutions, Electroanal. Chem. Interfac. Electrochem., 47, 47-64, 1973.
 
[32]  Dong, S., Xie, Y., Cheng, G., Cyclic voltammetry and spectroelectrochemical studies of copper in alkaline solution, Electrochim. Acta, 37, 17-22, 1992.
 
[33]  El Haleem, S. M., Ateya, B. G., Cyclic voltammetry of copper in sodium hydroxide, J. Electroanal. Chem., 117, 309-319, 1981.
 
[34]  Strehblow, H-H., Maurice, V., Marcus, P., Initial and later stages of anidic oxide formation on Cu, chemical aspects, structure and electronic properties, Electrochim. Acta, 46, 3755-3766, 2001.
 
[35]  Baricuatro, J. H., Ehlers, C. B., Cummins, K. D., Soriaga, M. P., Stickney, J. I., Structure and composition of Cu(hkl) surface exposed to O2 and emerged from alkaline solutions: Prelude to UHV-EC studies of CO2 reduction ar well-defined copper catalysts, J. Electroanal. Chem., 716, 101-105, 2014.
 
[36]  Zhou, G., Yang, J. C., Temperature effects on the growth of oxide islands on Cu(110), Appl. surf. sci. 222, 357-364, 2004.
 
[37]  Zhou, G., Yang, J. C., Temperature effect on the Cu2O oxide morphology created by oxidation of Cu(001) as investigated by in situ UHV TEM, Appl. surf. sci., 210, 165-170, 2003.
 
[38]  Zhou, G., Yang, J. C., Initial oxidation kinetics of copper (110) film investigated by in situ UHV-TEM, Surf. sci., 531, 359-367, 2003.
 
[39]  Beverskog, B., Puigdomenech, I., Revised Pourbaix Diagrams for Copper at 25 to 300°C, J. Electrochem. Soc., 144, 3476-3483, 1997.