World Journal of Chemical Education. 2016, 4(1), 13-20
DOI: 10.12691/WJCE-4-1-3
Original Research

Investigations of Some Reliable Electrochemiluminescence Systems on the Basis of tris(bipyridyl)Ruthenium(II) for HPLC Analysis

A. Habekost1,

1Department of Chemistry, University of Education Ludwigsburg, Reuteallee 46, D-71634 Ludwigsburg, Germany

Pub. Date: April 08, 2016

Cite this paper

A. Habekost. Investigations of Some Reliable Electrochemiluminescence Systems on the Basis of tris(bipyridyl)Ruthenium(II) for HPLC Analysis. World Journal of Chemical Education. 2016; 4(1):13-20. doi: 10.12691/WJCE-4-1-3

Abstract

Electrogenerated chemiluminescence (ECL) is not only an aesthetic phenomenon, but also of fundamental interest in analytical chemistry Several experiments are presented to introduce students to the capacity of ECL on the basis of tris(2, 2’-bipyridyl)ruthenium (II) (Ru(bpy)32+) with different coreactants.. First, we summarize some spectroscopic and electrochemical features of Ru(bpy)32+ that are important concerning ECL. Easily implemented experimental set-ups are presented, which show the correlation between ECL-intensity and cyclic voltammetry (CV) for different Ru(bpy)32+ / coreactant systems. The time-dependence of the ECL-decay is measured on a millisecond time-scale with a conventional data acquisition system. Finally, we present an ECL detector that can be used in HPLC as an alternative to adsorption and fluorescence detection.

Keywords

four-year undergraduate, beginner PhD student, analytical, UVVIS and fluorescence spectroscopy, mass spectrometry, electrochemistry, chemiluminescence, HPLC, hands-on learning/manipulatives

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  J. W. Birks, Chemiluminescence and Photochemical Reaction in Chromatography, VCH, New York (1989).
 
[2]  Miao, W., Choi, J.P., Bard, A. J., Electrogenerated Chemiluminescence 69: The Tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System Revisited - A New Route Involving TPrA•+ Cation Radicals, J. Am. Chem. Soc., 124(48), 14478-14485 (2002).
 
[3]  A. Kapturkiewicz, Electrogenerated chemiluminescence from the tris(2,2'-bipyridine)ruthenium(II) complex, Chem. Phys. Lett. 236, 389-394 (1995).
 
[4]  D. M. Hercules, F. E. Lytle, Chemiluminescence from reduction reactions, J. Am. Chem. Soc., 88, 4795-4796 (1966).
 
[5]  M. M. Richter, Electrochemiluminescence (ECL), Chem. Rev. 104, 3003-3036 (2004).
 
[6]  S. Parveen, M. S. Aslam, L. Hu, G. Xu, Electrogenerated Chemiluminescence. Protocols and Applications, Springer, Heidelberg (2013).
 
[7]  A. J. Bard (Ed.), Electrogenerated Chemiluminescence, Marcel Dekker, New York (2004).
 
[8]  R. M. Wightman, S. P. Forry, R. Maus, D. Badocco, P. Pastore, Rate-determining step in the electrogenerated chemiluminescence from tertiary amines with tris(2,2'-bipyridine)​ruthenium(II), J. Phys. Chem. B, 108, 19119-19125 (2004).
 
[9]  W. Jackson, D. R. Bobbitt, Chemiluminescence detection of amino acids using in situ generation Ru(bpy)33+, Anal. Chim. Acta, 285, 309-320 (1994).
 
[10]  S.N. Brune, D. R. Bobbitt, Role of electron-donating/withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris(2,2'-bipyridine)ruthenium(II) with amino acids, Anal. Chem. 64, 166-170 (1992).
 
[11]  D. R. Skotty, W-Y. Lee, T. A. Nieman, Determination of dansyl amino acids and oxalate by HPLC with electrogenerated Chemiluminescence detection using tris(2,2’-bipyridyl)ruthenium (II) in the mobile phase, Anal. Chem. 68(9), 1530-1535 (1996).
 
[12]  W-Y. Lee, T. A. Nieman, Determination of dansyl amino acids using tris(2,2’-bipyridyl)ruthenium (II) chemiluminescence for post column reaction detection in high-performance liquid chromatography, J. Chromatogr. A, 659, 111-118 (1994).
 
[13]  J. S. Riden, G. J. Klopf, T. A. Nieman, Determination of glyphosate and related compounds using HPLC with tris(2,2'-bipyridine) ruthenium(II) electrogenerated chemilumines-cence detection, Anal. Chim. Acta, 341, 195-204 (1997).
 
[14]  J. L. Adock, N. W. Barnett, R. D. Gerardi, C. E. Lenehan, S. W. Lewis, Determination of glyphosate mono-isopropylamine salt in process samples using flow injection analysis with tris(2,2'-bipyridine)ruthenium(II) chemiluminescence detection, Talanta, 64, 534-537 (2004).
 
[15]  Y. Zu, A. J. Bard, Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the Ruthenium tris[2,2’)bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity, Anal. Chem. 72, 3223-3232 (2000).
 
[16]  K. Kalyanasundaram, Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium (II) and its analogues, Coord. Chem. Rev. 46, 159-244 (1982).
 
[17]  C-T. Lin, N. Sutin, Quenching of the luminescence of the tris(2,2'-bipyridine) complexes of ruthenium(II) and osmium(II). Kinetic considerations and photogalvanic effects, J. Phys. Chem. 80(2) 97-105 (1976).
 
[18]  R. D. Gerardi, N. W. Barnett, P. Jones, Two chemical approaches for the production of stable solutions of tris(2,2'-bipyridine)ruthenium(III) for analytical chemiluminescence, Anal. Chim. Acta, 388, 1-10 (1999).
 
[19]  J. Jin, F. Takahashi, T. Kaneko, T. Nakamura, Characterization of electrochemiluminescence of tris(2,2'-bipyridine)​ruthenium(II) with glyphosate as coreactant in aqueous solution, Electrochim. Acta, 55, 5532-5537 (2010).
 
[20]  H-Y. Chuang, T-P. Hong, C-W. Whang, A simple and rapid screening method for glyphosate in water using flow-injection with electrochemiluminescence detection, Anal. Methods, 5, 6186-6191 (2013).
 
[21]  H-Y Chiu, Z-Y. Lin, H-L. Tu, C-W. Whang, Analysis of glyphosate and aminomethyphosphonic acid by capillary electrophoresis with electroluminescence detection, J. Chromatogr. A 1177, 195-198 (2008).
 
[22]  Y. Hu, A. Maclennan, T. K. Sham, Electronic structure and optical luminescence studies of Ru based OLED compounds, J. Luminesc. 166, 143-147 (2015).
 
[23]  H. Sevian, S. Müller, H. Rudmann, M. F. Rubner, Using organic light-emitting electrochemical thin-film device to teach material science, J. Chem. Educ. 81, 1620-1623 (2004).
 
[24]  N. Aristov, A. Habekost, Cyclic Voltammetry - A Versatile Electrochemical Method Investigating Electron Transfer Processes, World Journal of Chemical Education. 3(5), 115-119 (2015).
 
[25]  Börjesson, E. and Torstensson, L, New methods for determination of glyphosate and (aminomethyl)phosphonic acid in water and soil, J. Chromatogr., 886, 207-216 (2000).