World Journal of Chemical Education. 2016, 4(2), 32-44
DOI: 10.12691/WJCE-4-2-2
Original Research

Practical Chemistry of Long-Lasting Bubbles

Momoko Ueno1, 2, Naho Isokawa1, Kazuki Fueda1, Suzuka Nakahara1, Hinako Teshima1, Nanami Yamamoto1, Haruka Yokoyama1, Yukina Noritsugu1, Koushi Shibata1, Kourin Miyagawa1, Seiko Tanaka1, Takashi Hirano1, Ayako Fujito2, Ayaka Takashima2 and Kenichi Kanno2,

1Kindai University Fukuoka High School, 11-6 Kayanomori, Iizuka, Fukuoka, Japan

2Department of Biological and Environmental Chemistry, Kindai University, 11-6 Kayanomori, Iizuka, Fukuoka, Japan

Pub. Date: May 18, 2016

Cite this paper

Momoko Ueno, Naho Isokawa, Kazuki Fueda, Suzuka Nakahara, Hinako Teshima, Nanami Yamamoto, Haruka Yokoyama, Yukina Noritsugu, Koushi Shibata, Kourin Miyagawa, Seiko Tanaka, Takashi Hirano, Ayako Fujito, Ayaka Takashima and Kenichi Kanno. Practical Chemistry of Long-Lasting Bubbles. World Journal of Chemical Education. 2016; 4(2):32-44. doi: 10.12691/WJCE-4-2-2

Abstract

In this report, an experiment is described in which high school students investigate long-lasting bubbles of their own design. The features of the soap bubbles change depending on their chemical composition. To investigate the students’ original bubbles, the chemical structures and features of the ingredients are considered when choosing the detergent, polymer, and other chemical components. Soap bubble containing sucrose, sodium alkyl ether sulfate (AES)-detergent and poly(vinyl alcohol) (PVA) (or partially hydrolyzed poly(vinyl alcohol) (PVAAc)) often maintains a spherical shape on various solid surfaces, including concrete, asphalt, tile, and grass after landing. Students hypothesize that the low surface tension of the long-lasting bubble is not the sole reason for its long lifetime on various solid surface. The mechanism behind the extended lifetime is discussed through experiments involving the surface tension and lifetimes of the bubbles under various humidity conditions. Students encounter basic chemistry through the experiment, which can be adopted into the chemistry curriculum.

Keywords

long-lasting bubble, polymer, surfactant, high school chemistry

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Kuehner, A. L. Long-Lived Soap Bubbles: The use of sodium 9,10-dibromostearate solutions. J. Chem. Educ. 1958, 35(7), 337.
 
[2]  Grosse, A. V. Soap Bubbles: Two Years Old and Sixty Centimeters in Diameter. Science 1969, 164, 291-293.
 
[3]  Douglas, J. Solution of the Problem of Plateau. Trans. Amer. Math. Soc. 1931, 33 (1), 263-321.
 
[4]  Marangoni, C. G. M. Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfl?che einer anderen. Ann. Phys. Chem. 1871, 143, 337-354.
 
[5]  DuPont Specialty Chemicals Technical Information, “QUILON Chrome Complex for Improved Performance of Polyvinyl Alcohol Paper Coatings, Films, and Adhesives” (http://zaclon.com/pdf/elvanol_quilon_paper.pdf), 25 July 2015 access; Miyoshi, R.; Nakanishi, T., J. Human Environ. Engin. (Japanese) 2000, 2, 72-73.
 
[6]  Bercea, M.; Morariu, S.; Rusu, D. In-situ Gelation of Aqueous Solutions of Entangled Poly(vinyl alcohol). Soft Matter 2013, 9, 1244-1253.
 
[7]  Chattopadhyay, A. Time−Dependent Changes in a Shampoo Bubble. J. Chem. Educ. 2000, 77, 1339-1342.
 
[8]  Sarma, T. K.; Chattopadhyay, A. Simultaneous Measurement of Flowing Fluid Layer and Film Thickness of a Soap Bubble using a UV−visible Spectrometer. Langmuir 2001, 17, 6399-6403.
 
[9]  Afanasyev, Y. D.; Andrews, G. T.; Deacon, C. G. Measuring Soap Bubble Thickness with Color Matching. Am. J. Phys. 2011, 79, 1079-1082.
 
[10]  Marangoni, C. G. M. Ueber die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen. Ann. Phys. Chem. 1871, 143, 337-354.
 
[11]  Parkinson, L.; Sedev, R.; Fornasiero, D.; Ralston, J. The Terminal Rise Velocity of 10–100 µm Diameter Bubbles in Water, J. Colloid.Interface Sci. 2008, 322, 168-172.
 
[12]  Isenberg, C. The Science of Soap Films and Soap Bubbles, Dover Publications: New York, 1992; p 14.
 
[13]  Sun, J.; Bhushan B.; Tonga, J. Structural Coloration in Nature, RSC Adv. 2013, 3, 14862-14889.
 
[14]  Douglas, J. Solution of the Problem of Plateau. Trans. Amer. Math. Soc. 1931, 33(1), 263-321.
 
[15]  Pepling, R. Soap Bubbles. The Simple Interaction between Soap and Water Molecules Leads to Bubble Formation. C&EN 2003, 81(17), 34.
 
[16]  Miller, R.; Joos, P; Fainerman, V. B. Dynamic Surface and Interfacial Tensions of Surfactant and Polymer Solutions. Adv. Colloid and Interface Sci. 1994, 49, 249-302.
 
[17]  Harkins, W. D.; Brown, F. E. The Determination of Surface Tension (Free Surface Energy), and the Weight of Falling Drops: The Surface Tension of Water And Benzene by the Capillary Height Method. J. Am. Chem. Soc. 1919, 41, 499–524. The correlation factor in Table IX (p. 519) was used for this experiment.
 
[18]  Isenberg, C. The Science of Soap Films and Soap Bubbles; Dover Publications: New York, 1992; p 14.
 
[19]  Vargaftik, N. B.; Volkov, B. N.; Voljak, L. D. International Tables of the Surface Tension of Water. J. Phys. Chem. Ref. Data 1983, 12 (3), 817-820.
 
[20]  Witte, P.; Dijkstra, P. J.; Berg, J. W. A.; Feijen, J. Phase Separation Processes in Polymer Solutions in Relation to Membrane Formation. J. Membrane Sci. 1996, 117, 1-31.
 
[21]  Komiya, S.; Otsuka, E.; Hirashima, Y.; Suzuki, A. Salt Effects on Formation of Microcrystallites in Poly(vinyl alcohol) Gels Prepared by Cast-Drying Method. Prog. Nat. Sci.: Mater. Int. 2011, 21, 375-37.
 
[22]  Hassan, C. M.; Peppas, N. A. Structure and Morphology of Freeze/Thawed PVA Hydrogels. Macromol., 2000, 33, 2472-2479.
 
[23]  Bird, J. C.; de Ruiter, R.; Courbin, L.; Stone, H. A. Daughter Bubble Cascades Produced by Folding of Ruptured Thin Films. Nature, 2010, 465, 759-762.