World Journal of Chemical Education. 2016, 4(5), 93-100
DOI: 10.12691/WJCE-4-5-1
Original Research

An Undergraduate-Level Electrochemical Investigation of Gold Nanoparticles-Modified Physically Small Carbon Electrodes

Shaneel Chandra1, 2, , Wycliff Tupiti2, Sevlin Singh2, Zafiar Naaz2, Pritika K. Kishor2, Archana Goundar2, Malina Fakraufon2 and Surendra Prasad2

1School of Medical and Applied Sciences, Building 6, Central Queensland University, Bruce Highway, North Rockhampton QLD 4702, Australia

2School of Biological and Chemical Sciences, Faculty of Science, Technology and Environment, University of the South Pacific, Laucala Campus, Suva, Fiji

Pub. Date: August 24, 2016

Cite this paper

Shaneel Chandra, Wycliff Tupiti, Sevlin Singh, Zafiar Naaz, Pritika K. Kishor, Archana Goundar, Malina Fakraufon and Surendra Prasad. An Undergraduate-Level Electrochemical Investigation of Gold Nanoparticles-Modified Physically Small Carbon Electrodes. World Journal of Chemical Education. 2016; 4(5):93-100. doi: 10.12691/WJCE-4-5-1

Abstract

This paper reports an undergraduate experiment based on analytical chemistry, electrochemistry and materials science of carbon microelectrodes. The modification of the electroactive surface of the carbon microelectrode was done using gold nanoparticles electrodeposited from gold solution. To determine the changes on the surface, the electrode was subjected to simple optical microscopy. Next, the electrode was characterized using fast-scan cyclic voltammetry of two known electrochemical redox markers: hexaamineruthenium(III) chloride and potassium hexacyanoferrate (III), i.e. potassium ferricyanide. The redox behavior of both markers demonstrated the change in electrode surface. After modification, the ferricyanide reduction peaks were observed to increase significantly, as a consequence of accelerated electron transfer. Furthermore, changes in wave slope and half-wave potentials (E½) of the redox waves also confirmed an altered electrode surface that students can logically trace back to the modification. The electrode tip dimension was also determined using a modified form of the Cottrell equation, confirming the tip size to be 2.0 µm. The discussion of these results enables an understanding of electrochemistry, analytical chemistry and materials chemistry, and presents an excellent opportunity to apply these in an undergraduate setting.

Keywords

upper-division undergraduate, laboratory instruction, physical chemistry, hands-on learning, electrochemistry, materials science, surface science

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Zheng, D.; Vashist, S.; Dykas, M.; Saha, S.; Al-Rubeaan, K.; Lam, E.; Luong, J.; Sheu, F.-S., Graphene versus multi-walled carbon nanotubes for electrochemical glucose biosensing. Materials 2013, 6 (3), 1011-1027.
 
[2]  Chandra, S.; Wong, D. K. Y., Electrochemical detection of neurotransmitters at structurally small electrodes. Nova Science Publishers: New York, 2009; p 317-337.
 
[3]  Wang, L.; Xu, H.; Song, Y.; Luo, J.; Wei, W.; Xu, S.; Cai, X., Highly sensitive detection of quantal dopamine secretion from pheochromocytoma cells using neural microelectrode array electrodeposited with polypyrrole graphene. ACS Appl. Mat. 2015,7 (14), 7619-7626.
 
[4]  Song, Y.; Chen, J.; Sun, M.; Gong, C.; Shen, Y.; Song, Y.; Wang, L., A simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoring carbamate pesticides in real samples. J. Hazard. Mater. 2016,304, 103-109.
 
[5]  Baccarin, M.; Janegitz, B. C.; Berté, R.; Vicentini, F. C.; Banks, C. E.; Fatibello-Filho, O.; Zucolotto, V., Direct electrochemistry of hemoglobin and biosensing for hydrogen peroxide using a film containing silver nanoparticles and poly(amidoamine) dendrimer. Mater. Sci. Eng., C 2016,58, 97-102.
 
[6]  Veseli, A.; Vasjari, M.; Arbneshi, T.; Hajrizi, A.; Švorc, Ľ.; Samphao, A.; Kalcher, K., Electrochemical determination of histamine in fish sauce using heterogeneous carbon electrodes modified with rhenium(IV) oxide. Sens. Actuators, B 2016,228, 774-781.
 
[7]  Compton, R. G.; Wadhawan, J., Electrochemistry: Nanoelectrochemistry. Royal Society of Chemistry: 2013.
 
[8]  Brett, C. M., Electroanalytical techniques for the future: the challenges of miniaturization and of real-time measurements. Electroanalysis 1999, 11 (14), 1013-1016.
 
[9]  Dai, X.; Compton, R. G., Gold nanoparticle modified electrodes show a reduced interference by Cu(II) in the detection of As(III) using anodic stripping voltammetry. Electroanalysis 2005,17 (14), 1325-1330.
 
[10]  Cobelo-García, A.; Santos-Echeandía, J.; López-Sánchez, D. E.; Almécija, C.; Omanovic, D., Improving the voltammetric quantification of ill-defined peaks using second derivative signal transformation: example of the determination of platinum in water and sediments. Anal. Chem. 2014, 86 (5), 2308-2313.
 
[11]  Chandra, S.; Miller, A. D.; Bendavid, A.; Martin, P. J.; Wong, D. K. Y., Minimizing Fouling at Hydrogenated Conical-Tip Carbon Electrodes during Dopamine Detection in Vivo. Anal. Chem. 2014, 86 (5), 2443-2450.
 
[12]  Hayat, A.; Marty, J. L., Disposable screen printed electrochemical sensors: tools for environmental monitoring. Sensors (Basel, Switzerland) 2014, 14 (6), 10432-53.
 
[13]  Lin, Y.; Lu, F.; Tu, Y.; Ren, Z., Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Letters 2004,4 (2), 191-195.
 
[14]  Godino, N.; Borrisé, X.; Muñoz, F. X.; del Campo, F. J.; Compton, R. G., Mass transport to nanoelectrode arrays and limitations of the diffusion domain approach: Theory and experiment. J. Phys. Chem. C. 2009,113 (25), 11119-11125.
 
[15]  Wipf, D. O.; Michael, A. C.; Wightman, R. M., Microdisk electrodes: Part II. Fast-scan cyclic voltammetry with very small electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1989, 269 (1), 15-25.
 
[16]  Štulík, K., Challenges and promises of electrochemical detection and sensing. Electroanalysis 1999, 11 (14), 1001-1004.
 
[17]  Bard, A. J., New challenges in electrochemistry and electroanalysis. Pure Appl. Chem. 1992, 64 (2), 185-192.
 
[18]  Valetaud, M.; Loget, G.; Roche, J.; Hüsken, N.; Fattah, Z.; Badets, V.; Fontaine, O.; Zigah, D., The EChemPen: A Guiding Hand To Learn Electrochemical Surface Modifications. J. Chem. Educ. 2015, 92 (10), 1700-1704.
 
[19]  Martín-Yerga, D.; Costa Rama, E.; Costa García, A., Electrochemical Study and Determination of Electroactive Species with Screen-Printed Electrodes. J. Chem. Educ. 2016.
 
[20]  Brown, J. H., Analysis of Two Redox Couples in a Series: An Expanded Experiment To Introduce Undergraduate Students to Cyclic Voltammetry and Electrochemical Simulations. J. Chem. Educ. 2016.
 
[21]  Popa, A.; Abenojar, E. C.; Vianna, A.; Buenviaje, C. Y. A.; Yang, J.; Pascual, C. B.; Samia, A. C. S., Fabrication of Metal Nanoparticle-Modified Screen Printed Carbon Electrodes for the Evaluation of Hydrogen Peroxide Content in Teeth Whitening Strips. J. Chem. Educ. 2015, 92 (11), 1913-1917.
 
[22]  Ji, X.; Banks, C. E.; Crossley, A.; Compton, R. G., Oxygenated edge plane sites slow the electron transfer of the ferro-/ferricyanide redox couple at graphite electrodes. Chem Phys Chem 2006,7 (6), 1337-1344.
 
[23]  Britz, D.; Chandra, S.; Strutwolf, J.; Wong, D. K. Y., Diffusion-limited chronoamperometry at conical-tip microelectrodes. Electrochim. Acta 2010, 55 (3), 1272-1277.
 
[24]  Dai, X.; Nekrassova, O.; Hyde, M. E.; Compton, R. G., Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal. Chem. 2004, 76 (19), 5924-5929.
 
[25]  Kwon, S. J.; Fan, F.-R. F.; Bard, A. J., Observing iridium oxide (IrOx) single nanoparticle collisions at ultramicroelectrodes. JACS 2010, 132 (38), 13165-13167.
 
[26]  Park, J. H.; Thorgaard, S. N.; Zhang, B.; Bard, A. J., Single particle detection by area amplification: single wall carbon nanotube attachment to a nanoelectrode. JACS 2013,135 (14), 5258-5261.
 
[27]  El-Hallag, I.; Al-Youbi, A.; Obaid, A.; El-Mossalamy, E.; El-Daly, S.; Asiri, A., Electrochemical investigation of cysteamine at carbon fiber microdisk electrode. J. Chil. 2011, 56 (4), 837-841.
 
[28]  McKnight, T. E.; Melechko, A. V.; Fletcher, B. L.; Jones, S. W.; Hensley, D. K.; Peckys, D. B.; Griffin, G. D.; Simpson, M. L.; Ericson, M. N., Resident neuroelectrochemical interfacing using carbon nanofiber arrays. J. Phys. Chem. B. 2006,110 (31), 15317-27.
 
[29]  Zhong, G.; Liu, A.; Xu, X.; Sun, Z.; Chen, J.; Wang, K.; Liu, Q.; Lin, X.; Lin, J., Detection of femtomolar level osteosarcoma-related gene via a chronocoulometric DNA biosensor based on nanostructure gold electrode. Int. J. Nanomedicine 2012, 7, 527-36.
 
[30]  Williams, O. A., Nanodiamond. Royal Society of Chemistry: 2014.
 
[31]  Siraj, S.; McRae, C. R.; Wong, D. K. Y., Effective activation of physically small carbon electrodes by n-butylsilane reduction. Electrochem. Commun. 2016, 64, 35-41.
 
[32]  Monk, P., Fundamentals of Electroanalytical Chemistry. John Wiley & Sons Ltd: Kent, 2001.
 
[33]  Kanyong, P.; Rawlinson, S.; Davis, J., A non-enzymatic sensor based on the redox of ferrocene carboxylic acid on ionic liquid film-modified screen-printed graphite electrode for the analysis of hydrogen peroxide residues in milk. J. Electroanal. Chem. 2016,766, 147-151.
 
[34]  Ostatná, V.; Černocká, H.; Kurzątkowska, K.; Paleček, E., Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes. Anal. Chim. Acta 2012,735, 31-36.
 
[35]  Toma, H. E.; Zamarion, V. M.; Toma, S. H.; Araki, K., The coordination chemistry at gold nanoparticles. J. Braz. Chem. Soc. 2010, 21, 1158-1176.
 
[36]  Chandra, S.; Miller, A. D.; Wong, D. K. Y., Evaluation of physically small p-phenylacetate-modified carbon electrodes against fouling during dopamine detection in vivo. Electrochim. Acta 2013, 101 (0), 225-231.