World Journal of Chemical Education. 2017, 5(1), 20-22
DOI: 10.12691/WJCE-5-1-4
Communication

How Many Chemical Elements are there in the Universe? A (not so) Bohring Question

E. Garrone1, C.O. Areán2 and B. Bonelli1,

1Department of Applied Science and Technology and INSTM Unit of Torino-Politecnico, Corso Duca degli Abruzzi 24, Politecnico di Torino I-10129, Turin (Italy)

2Departamento de Química, Universidad de las Islas Baleares E-07122, Palma de Mallorca, Spain

Pub. Date: February 27, 2017

Cite this paper

E. Garrone, C.O. Areán and B. Bonelli. How Many Chemical Elements are there in the Universe? A (not so) Bohring Question. World Journal of Chemical Education. 2017; 5(1):20-22. doi: 10.12691/WJCE-5-1-4

Abstract

This paper replies to two of the most common questions that students usually pose to their teacher during a general chemistry course, i.e. how many chemical elements are in the Periodic Table and how many could be in our Universe. Reply to the former question can be easily found either in the literature or in any updated chemistry book. More interestingly, this communication shows that the latter question may be (simply) answered by making reference to the Bohr’s atomic model that, notwithstanding its well-known limits, allows teachers to demonstrate that (for a hydrogenoid atom) 137 is the highest possible value for Z, as predicted by quantum electrodynamics, a much more complicated theory, usually taught in Physics advanced courses.

Keywords

Bohr atomic model, general chemistry, base chemistry course, periodic table, hydrogenoid atom, speed of light, Ununseptium, island of stability, atomic number

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Khujagbaatar, J., Yakushev, A., Düllmann, C.E., Ackermann, D., Andersson, L.L., Asai, M., Block, M., Boll, R.A., Brand. H., Cox, D.M., Dasgupta, M., Derkx, X., Di Nitto, A., Eberhardt, K., Even, J., Evers, M., Fahlander, C., Forsberg, U., Gates, J.M., Gharibyan, N., Golubev, P., Gregorich, K.E., Hamilton, J.H., Hartmann, W., Herzberg, R.D., Heßberger, F.P., Hinde, D.J., Hoffmann, J., Hollinger, R., Hübner, A., Jäger, E., Kindler, B., Kratz, J.V., Krier, J., Kurz, N., Laatiaoui, M., Lahiri, S., Lang, R., Lommel, B., Maiti, M., Miernik, K., Minami, S., Mistry, A., Mokry, C., Nitsche, H., Omtvedt, J.P., Pang, G.K., Papadakis, P., Renisch, D., Roberto, J., Rudolph, D., Runke, J., Rykaczewski, K.P., Sarmiento, L.G., Schädel, M., Schausten, B., Semchenkov, A., Shaughnessy, D.A., Steinegger, P., Steiner, J., Tereshatov, E.E., Thörle-Pospiech, P., Tinschert, K., Torres De Heidenreich, T., Trautmann, N., Türler, A., Uusitalo, J., Ward, D.E., Wegrzecki, M., Wiehl, N., Van Cleve, S.M., and Yakusheva, V., “48C
 
[2]  Meyerhof, W.E. Nuclear Structure, Elements of Nuclear Physics. Mc-Graw-Hill, New York, 1967, 11-69.
 
[3]  Hofmann, S. “Exploring the island of superheavy elements”, Physics, 3, 31. April 2010.
 
[4]  Oganessian, Y.T., Utyonkov, V.K., Lobanov, Y.V., Abdullin, F.S., Polyakov, A.N., Sagaidak, R.N., Shirokovsky, I.V., Tsyganov, Y. S., Voinov, A. A., Gulbekian, G. G., Bogomolov, S. L., Gikal, B. N., Mezentsev, A. N., Iliev, S., Subbotin, V. G., Sukhov, A. M., Subotic, K., Zagrebaev, V. I., Vostokin, G. K. and Itkis, M. G., “Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions”, Phys. Rev. C, 74, 044602. April 2006.
 
[5]  de Marcillac, P., Coron, N., Dambier, G., Leblanc, J., & Moalic, J.P., “Experimental detection of α-particles from the radioactive decay of natural bismuth”, Nature, 422, 876-878. March 2003.
 
[6]  Choppin, G., Liljezin, J.O. & Rydberg, J. (2002). Nuclear Mass and Stability, Radiochemistry and Nuclear Chemistry, Butterworth-Heinemann, Woburn, MA, 2002, 41-57.