World Journal of Chemical Education. 2017, 5(4), 120-127
DOI: 10.12691/WJCE-5-4-1
Original Research

Quantum Dots, Part 1: Optical and Electrochemical Properties of CdTe Quantum Dots

A. Habekost1,

1University of Education Ludwigsburg, Department of Chemistry, Reuteallee 46, D-71634 Ludwigsburg, Germany

Pub. Date: June 12, 2017

Cite this paper

A. Habekost. Quantum Dots, Part 1: Optical and Electrochemical Properties of CdTe Quantum Dots. World Journal of Chemical Education. 2017; 5(4):120-127. doi: 10.12691/WJCE-5-4-1

Abstract

Quantum dots (QDs) are colloidal semiconductor clusters with physical dimensions in the range of several nanometers. Since the discovery of QDs in 1983, there has been a wide variety of research interest and activity. In particular, the mechanisms behind photoluminescence (PL) and electrogenerated chemiluminescence (ECL) and the applications of QDs have been extensively investigated. Bright fluorescence effect many analytical and technical applications: QDs have found promising applications as fluorescent biolabels [1,2], in optoelectronic and photovoltaic devices [3,4], and in light-emitting diodes (LEDs) [5,6]. This paper outlines some straightforward electrochemical and spectroscopic experiments with commercial CdTe QDs to explain their background mechanisms (e.g., electron-hole separation and recombination).

Keywords

three-year undergraduate, quantum dots, electrochemistry, electrochemiluminescence, UV-VIS-spectrometry, hands-on learning/manipulatives

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Schience 281, 2013 (1998).
 
[2]  W.C. Chan, S.M. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science 281, 2016 (1998).
 
[3]  D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications, Chem. Rev. 110, 389 (2010).
 
[4]  P. Bhattacharya, S. Ghosh, A.D. Stiff-Roberts, Quantum dot opto-electronic devices, Annu. Rev. Mater. Res. 34, 1 (2004).
 
[5]  Q.Q. Dai, C.E. Duty, M.Z. Hu, Semiconductor-nanocrystals-based white light-emitting diodes, Small, 6, 1577 (2010).
 
[6]  H.V. Demir, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, A. Eychmüller, Quantum dot integrated LEDs using photonic and excitonic color conversion, Nano Today, 6, 632 (2011).
 
[7]  R. Rosetti, S. Nakahara, L.E. Brus, Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution, J. Chem. Phys. 79, 1086 (1983).
 
[8]  L.E. Brus, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, J. Chem. Phys. 79, 5566 (1983).
 
[9]  L.E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 80, 4403 (1984).
 
[10]  S. Baskoutas, A.F. Terzis, Size-dependent band gap of colloidal quantum dots, J. Appl. Phys. 99, 13708 (2006).
 
[11]  P. Wu, X. Hou, J-J. Xu, H-Y Chen, Electrochemically Generated versus Photoexcited Luminescence from Semiconductor Nanomaterials: Bridging the Valley between Two Worlds, Chem. Rev. 114, 11027 (2014).
 
[12]  S.N. Baker, G.A. Baker, Luminescent carbon nanodots: Emergent Nanolights, Angew. Chem. Int. Ed. 49, 6726 (2101).
 
[13]  K.M. Omer, A.J. Bard, Electrogenerated Chemiluminescence of Aromatic Hydrocarbon Nanoparticles in an Aqueous Solution, J. Phys. Chem. 113, 11575 (2009).
 
[14]  G.Z. Zou, H.X. Ju, Electrogenerated Chemiluminescence from a CdSe Nanocrystal Film and Its Sensing Application in Aqueous Solution, Anal. Chem. 76, 6871 (2004).
 
[15]  S.N. Ding, J.J. Xu, H.Y. Chen, Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution, Chem. Commun. 3631 (2006).
 
[16]  Y.L. Mei, H.S. Wang, Y.F. Li, Z.Y. Pan, W.L. Jia, Enhanced solid-state electrochemiluminescence of CdS nanocrystals composited with carbon nanotubes in H2O2 solution, Electroanal. 22, 155 (2010).
 
[17]  S.K. Poznyak, D.V. Talapin, E.V. Shevchenko, H. Weller, Quantum Dot Chemiluminescence, Nano Lett. 4, 693 (2004).
 
[18]  L.H. Zhang, X.Q. Zou, E. Ying, S.J. Dong, Quantum dot electrochemiluminescence in aqueous solution at lower potential and its sensing application, J. Phys. Chem. C, 112, 4451 (2008).
 
[19]  H. Jiang, X.M. Wang, Anodic electrochemiluminescence of CdSe nanoparticles coreacted with tertiary amine and halide induced quenching effect, Electrochem. Commun. 11, 1207 (2009).
 
[20]  Z.F. Ding, B.M. Quinn, S.K. Haram, L.E. Pell, B.A. Korgel, A.J. Bard, Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots, Science, 296, 1293 (2002).
 
[21]  M. Zhang, F. Wan, S. Wang, S. Ge, M. Yan, J. Yu, Determination of L-proline based on anodic electrochemiluminescence of CdTe quantum dots, J. Lumines. 132, 938 (2012).
 
[22]  A. Habekost, Investigations of some reliable electrochemiluminescence systems on the basis of tris(bipyridyl)Ruthenium(II) for HPLC analysis, World J. Chem. Educ. 4/1, 13-20 (2016).
 
[23]  R. Freeman, I, Willner, Optical molecular sensing with semiconductor quantum dots (QDs), Chem. Soc. Rev. 41, 4067 (2012).
 
[24]  M.P. Bruchez, Quantum dots find their stride in single molecule tracking, Curr. Opin. Chem. Biol, 15, 775 (2011).
 
[25]  W. Tu, X. Fan, J. Lou, Z. Dai, Label-free and highly sensitive electrochemiluminescence biosensing using quantum dots/carbon nanotubes in ionic liquid, Analyst 140, 2603 (2015).
 
[26]  M.L. Landry, T.E. Morrell, T.K. Karagounis, C-H. Hsia, C-Y. Wang, Simple Syntheses of CdSe Quantum Dots, J. Chem. Educ., 2014, 91, 274 (2014)].
 
[27]  L. D. Winkler, J. F. Arceo, W. C. Hughes, B. A. DeGraff and B. H. Augustine, Quantum Dots: An Experiment for Physical or Materials Chemistry, J. Chem. Educ. 82, 1700 (2005).
 
[28]  Y. Pan, Y.R. Li, Y. Zhao, D.L. Akins, Synthesis and Characterization of Quantum Dots: A Case Study Using PbS, J. Chem. Educ. 92, 1860 (2015).
 
[29]  K. J. Nordell, E.M. Boatman, G.C. Lisensky, A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals, J. Chem. Educ. 82, 1697 (2005).
 
[30]  B.M. Hutchins, T.T. Morgan, M.G. Ucak-Astarlioglu, M.E.. Williams, Optical Properties of Fluorescent Mixtures: Comparing Quantum Dots to Organic Dyes, J. Chem. Educ. 84, 1301 (2007).
 
[31]  P.J. Reid, B. Fujimoto, D.R. Gamelin, A Simple ZnO Nanocrystal Synthesis Illustrating Three-Dimensional Quantum Confinement, J. Chem. Educ. 91, 280 (2014).
 
[32]  W.E. Buhro, V.L. Colvin, Semiconductor nanocrystals: Shape matters, Nature Materials 2, 138 (2003).
 
[33]  T. Kippeny, L.A. Swafford, S.J. Rosenthal, Semiconductor Nanocrystals: A Powerful Visual Aid for Introducing the Particle in a Box, J. Chem. Educ. 79, 1094 (2002).
 
[34]  Y. Bae, N. Myung, A.J. Bard, Electrochemistry and electrogenerated Chemiluminescence of CdTe Nanoparticles, Nano Lett. 4, 1153 (2004).
 
[35]  N. Myung, Z. Ding, A.J. Bard, Electrogenerated Chemiluminescence of CdSe Nanocrystals, Nano Lett. 2, 1315 (2002).