World Journal of Chemical Education. 2017, 5(5), 158-163
DOI: 10.12691/WJCE-5-5-3
Original Research

Demonstrating Sustainable Biomass Utilization and Processing Using Ionic Liquids – An Introduction to Undergraduate Chemistry Laboratories

Daniel Rauber1, 2, Michael Conrad1, Johannes Huwer1, Harald Natter1, 2 and Rolf Hempelmann1, 2,

1Department of Physical Chemistry and Chemistry Didactics, Saarland University, Campus B2.2, 66123 Saarbrücken, Germany

2Transfercentre Sustainable Electrochemistry, Saarland University and KIST Europe, Campus Dudweiler, Zeile 3, 66125 Saarbrücken

Pub. Date: October 08, 2017

Cite this paper

Daniel Rauber, Michael Conrad, Johannes Huwer, Harald Natter and Rolf Hempelmann. Demonstrating Sustainable Biomass Utilization and Processing Using Ionic Liquids – An Introduction to Undergraduate Chemistry Laboratories. World Journal of Chemical Education. 2017; 5(5):158-163. doi: 10.12691/WJCE-5-5-3

Abstract

A more sustainable, greener chemistry aiming at the utilization of renewable resources is a main research focus to reduce human environmental impact. Unfortunately, there is a lack of powerful, environmentally benign solvents for the two most abundant renewable biopolymers, cellulose and lignin. Ionic liquids are here introduced to undergraduate chemistry laboratories as recyclable, tunable solvents for the dissolution and processing of biomass in the form of wood and its components to create alternative processes that are safer as well as waste- and additive-free. These experiments emphasize the principles of green chemistry and demonstrate the scope and potential of ionic liquids for the production of novel, biodegradable materials from renewable resources.

Keywords

ionic liquids, biomass, polymer chemistry, hands-on learning, green chemistry, material science, solvents

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  M. Poliakoff, P. Licence, Sustainable technology: Green chemistry, Nature. 450 (2007) 810-812.
 
[2]  D.L. Hjeresen, J.M. Boese, D.L. Schutt, Green Chemistry and Education, J. Chem. Educ. 77 (2000) 1543.
 
[3]  J. Andraos, A.P. Dicks, Green chemistry teaching in higher education: a review of effective practices, Chem. Educ. Res. Pr. 13 (2012) 69-79.
 
[4]  H. Tadesse, R. Luque, Advances on biomass pretreatment using ionic liquids: An overview, Energy Environ. Sci. 4 (2011) 3913.
 
[5]  Z. Zhang, J. Song, B. Han, Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids, Chem. Rev. 117 (2017) 6834-6880.
 
[6]  A. Brandt, J. Gräsvik, J.P. Hallett, T. Welton, Deconstruction of lignocellulosic biomass with ionic liquids, Green Chem. 15 (2013) 550.
 
[7]  J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, The Catalytic Valorization of Lignin for the Production of Renewable Chemicals, Chem. Rev. 110 (2010) 3552-3599.
 
[8]  T. Renders, S. Van den Bosch, S.-F. Koelewijn, W. Schutyser, B.F. Sels, Lignin-first biomass fractionation: the advent of active stabilisation strategies, Energy Environ. Sci. 10 (2017) 1551-1557.
 
[9]  E.C. Achinivu, R.M. Howard, G. Li, H. Gracz, W.A. Henderson, Lignin extraction from biomass with protic ionic liquids, Green Chem. 16 (2014) 1114-1119.
 
[10]  A.M. da Costa Lopes, K.G. João, A.R.C. Morais, E. Bogel-Łukasik, R. Bogel-Łukasik, Ionic liquids as a tool for lignocellulosic biomass fractionation, Sustain. Chem. Process. 1 (2013) 3.
 
[11]  B.M. Upton, A.M. Kasko, Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective, Chem. Rev. 116 (2016) 2275-2306.
 
[12]  W.O.S. Doherty, P. Mousavioun, C.M. Fellows, Value-adding to cellulosic ethanol: Lignin polymers, Ind. Crops Prod. 33 (2011) 259-276.
 
[13]  F. Hermanutz, F. Gähr, E. Uerdingen, F. Meister, B. Kosan, New Developments in Dissolving and Processing of Cellulose in Ionic Liquids, Macromol. Symp. 262 (2008) 23-27.
 
[14]  R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, Dissolution of Cellose with Ionic Liquids, J. Am. Chem. Soc. 124 (2002) 4974-4975.
 
[15]  H. Wang, G. Gurau, R.D. Rogers, Ionic liquid processing of cellulose, Chem. Soc. Rev. 41 (2012) 1519.
 
[16]  R. Hayes, G.G. Warr, R. Atkin, Structure and Nanostructure in Ionic Liquids, Chem. Rev. 115 (2015) 6357-6426.
 
[17]  D.A. Fort, R.C. Remsing, R.P. Swatloski, P. Moyna, G. Moyna, R.D. Rogers, Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride, Green Chem. 9 (2007) 63-69.
 
[18]  I. Kilpeläinen, H. Xie, A. King, M. Granstrom, S. Heikkinen, D.S. Argyropoulos, Dissolution of Wood in Ionic Liquids, J. Agric. Food Chem. 55 (2007) 9142-9148.
 
[19]  P. Mäki-Arvela, I. Anugwom, P. Virtanen, R. Sjöholm, J.P. Mikkola, Dissolution of lignocellulosic materials and its constituents using ionic liquids-A review, Ind. Crops Prod. 32 (2010) 175-201.
 
[20]  A. Stark, D. Ott, D. Kralisch, G. Kreisel, B. Ondruschka, Ionic Liquids and Green Chemistry: A Lab Experiment, J. Chem. Educ. 87 (2010) 196-201.
 
[21]  S. V. Dzyuba, K.D. Kollar, S.S. Sabnis, Synthesis of Imidazolium Room-Temperature Ionic Liquids. Exploring Green Chemistry and Click Chemistry Paradigms in Undergraduate Organic Chemistry Laboratory, J. Chem. Educ. 86 (2009) 856-858.
 
[22]  C.L. Williamson, K.E. Maly, S.L. MacNeil, Synthesis of Imidazolium Room-Temperature Ionic Liquids: A Follow-Up to the Procedure of Dzyuba, Kollar, and Sabnis, J. Chem. Educ. 90 (2013) 799-801.
 
[23]  A.J. Ragauskas, G.T. Beckham, M.J. Biddy, R. Chandra, F. Chen, M.F. Davis, B.H. Davison, R. a Dixon, P. Gilna, M. Keller, P. Langan, A.K. Naskar, J.N. Saddler, T.J. Tschaplinski, G. a Tuskan, C.E. Wyman, Lignin Valorization: Improving Lignin Processing in the Biorefinery, Science 344 (2014) 1246843-1-1246843-10.
 
[24]  N. Muhammad, Z. Man, M.I.A. Mutalib, M.A. Bustam, C.D. Wilfred, A.S. Khan, Z. Ullah, G. Gonfa, A. Nasrullah, Dissolution and Separation of Wood Biopolymers Using Ionic Liquids, ChemBioEng Rev. 2 (2015) 257-278.
 
[25]  P. T. Anastas, J. Warner, Green Chemistry: Theory and Practice, Oxford University Press, 2000.
 
[26]  D. Glas, C. Van Doorslaer, D. Depuydt, F. Liebner, T. Rosenau, K. Binnemans, D.E. De Vos, Lignin solubility in non-imidazolium ionic liquids, J. Chem. Technol. Biotechnol. 90 (2015) 1821-1826.
 
[27]  J. Sjöström, F. Rauch, I. Eilks, Chemistry Education For Sustainability, in: Relev. Chem. Educ., SensePublishers, Rotterdam, 2015: pp. 163-184.
 
[28]  N. Garner, A. Siol, J. Huwer, R. Hempelmann, I. Eilks, Implementing innovations in chemistry learning and sustainability education in a non- formal student laboratory context, LUMAT. 3 (2015) 449-461.
 
[29]  R. Hempelmann, Schülerlabor and Sustainability, in: I. Eilks, S. Markic, B. Ralle (Eds.), Sci. Educ. Res. Educ. Sustain. Dev., 2014: pp. 189-198.
 
[30]  M. Burmeister, F. Rauch, I. Eilks, Education for Sustainable Development (ESD) and chemistry education, Chem. Educ. Res. Pr. 13 (2012) 59-68.