World Journal of Chemical Education. 2018, 6(1), 1-7
DOI: 10.12691/WJCE-6-1-1
Special Issue

Nanochemistry - A Split between 18th Century and Modern Times

P. Heinzerling1, and M. Oetken1

1Department of Chemistry, University of Education Freiburg, Kunzenweg 21, D-79117 Freiburg, Germany

Pub. Date: January 27, 2018

Cite this paper

P. Heinzerling and M. Oetken. Nanochemistry - A Split between 18th Century and Modern Times. World Journal of Chemical Education. 2018; 6(1):1-7. doi: 10.12691/WJCE-6-1-1

Abstract

Nanoscience seems to be a main topic of this century. The chemical fundamentals are very old and named colloids since Graham in 1861. The acronym nano has been introduced in 1960 at a conference of measures and weights in Paris. In 1982 Binnig and Rohrer invented the scanning tunnel microscope(STM) and four years later Binnig the atomic force microscope(AFM). These microscopes are the main tools for the nanotechnology and from this times the number of publications exploded. In this article we’ll focus on the chemical aspects of nanotechnology and how to implement experiments into school.

Keywords

nanochemistry, history, colloids, fundamental reaction principles, experiments

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  W. Ostwald, An Introduction to Theoretical and Applied Colloid Chemistry, “The World of Neglected Dimensions,” Wiley, 1917.
 
[2]  W. Ostwald, Practical Colloid Chemistry, Methuen And Company Limited, 1926.
 
[3]  M. Faraday, The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light, Philos. Trans. R. Soc. Lond., 147 (1857) 145-181.
 
[4]  J. Tyndall, On the Blue Colour of the Sky, the Polarization of Skylight, and on the Polarization of Light by Cloudy Matter Generally, Proc. R. Soc. Lond., 17 (1868) 223-233.
 
[5]  M. Knoll, E. Ruska, Das Elektronenmikroskop, Z. Für Phys., 78 (1932) 318-339.
 
[6]  M. von Ardenne, B. von Borries, Electron scanning microscope, US2241432 A, 1941.
 
[7]  G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett., 40 (1982) 178-180.
 
[8]  G. Binnig, C.F. Quate, C. Gerber, Atomic Force Microscope, Phys. Rev. Lett., 56 (1986) 930-933.
 
[9]  P. Berger, N.B. Adelman, K.J. Beckman, D.J. Campbell, A.B. Ellis, G.C. Lisensky, Preparation and Properties of an Aqueous Ferrofluid, J. Chem. Educ., 76 (1999) 943.
 
[10]  H. Schmidt, Considerations about the sol-gel process: From the classical sol-gel route to advanced chemical nanotechnologies, J. Sol-Gel Sci. Technol., 40 (2006) 115.
 
[11]  W. Ostwald, Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper, Z. Für Phys. Chem., 34 (1900) 495-503.
 
[12]  J. Donau, Ueber eine rote, mittels Kohlenoxyd erhaltene kolloidale Goldlösung, Monatshefte Für Chem. Verwandte Teile Anderer Wiss., 26 (1905) 525-530.
 
[13]  J. Donau, Ueber die Bildung kolloider Lösungen mittelst Flammen oder elektrischer Entladungsfunken, Kolloid-Z., 16 (1915) 81.
 
[14]  J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc., 11 (1951) 55-75.
 
[15]  J.A. Creighton, C.G. Blatchford, M.G. Albrecht, Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength, J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys., 75 (1979) 790-798.
 
[16]  W. Halle, E. Pribram, Chemische und physikalisch-chemische Beobachtungen bei der Herstellung kolloider Goldlösungen, Berichte Dtsch. Chem. Ges., 47 (1914) 1398-1401.
 
[17]  A. van Hoonacker, P. Englebienne, Revisiting Silver Nanoparticle Chemical Synthesis and Stability by Optical Spectroscopy, Curr. Nanosci., 2 (2006) 359-371.
 
[18]  M. N. Nadagouda, R. S. Varma, Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract, Green Chem., 10 (2008) 859-862.
 
[19]  S. K. Nune, N. Chanda, R. Shukla, K. Katti, R. R. Kulkarni, S. Thilakavathy, S. Mekapothula, R. Kannan, K. V. Katti, Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles, J. Mater. Chem., 19 (2009) 2912-2920.
 
[20]  N. von Weimarn, Versuche zur Herstellung leicht reproduzierbarer Goldsole von rein roter Farbe mit wässerigen Auszügen aus Blumen, Kolloid-Z., 44 (1928) 41-42.
 
[21]  G. Panzarasa, K. Sparnacci, Glowing Teacup Demonstration: Trautz-Schorigin Reaction of Natural Polyphenols, J. Chem. Educ., 89 (2012) 1297-1300.
 
[22]  J.A. Creighton, C.G. Blatchford, M.G. Albrecht, Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength, J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys., 75 (1979) 790-798.
 
[23]  I. Torres-Díaz, C. Rinaldi, Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids, Soft Matter, 10 (2014) 8584-8602.
 
[24]  C. Janko, S. Dürr, L.E. Munoz, S. Lyer, R. Chaurio, R. Tietze, S. von L?hneysen, C. Schorn, M. Herrmann, C. Alexiou, Magnetic Drug Targeting Reduces the Chemotherapeutic Burden on Circulating Leukocytes, Int. J. Mol. Sci., 14 (2013) 7341-7355.
 
[25]  P. Berger, N.B. Adelman, K.J. Beckman, D.J. Campbell, A.B. Ellis, G.C. Lisensky, Preparation and Properties of an Aqueous Ferrofluid, J. Chem. Educ., 76 (1999) 943.
 
[26]  M.D. Cowley, R.E. Rosensweig, The interfacial stability of a ferromagnetic fluid, J. Fluid Mech., 30 (1967) 671-688.
 
[27]  J.X.H. Wong, H.-Z. Yu, Preparation of Transparent Superhydrophobic Glass Slides: Demonstration of Surface Chemistry Characteristics, J. Chem. Educ., 90 (2013) 1203-1206.
 
[28]  A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40 (1944) 546-551.
 
[29]  Bureau International Poids et Mesures, BIPM - Resolution 12 of the 11th CGPM, (1960).