World Journal of Chemical Education. 2018, 6(1), 63-71
DOI: 10.12691/WJCE-6-1-10
Special Issue

Organic Redox-Flow Batteries Using Hair Dyes and Pharmaceuticals

Dominique Rosenberg1, , Svenja Pansegrau1, Mirco Wachholz1, Anja Köppen1, Maike Busker1 and Walter Jansen1

1Chemistry and Chemistry Education, Institute of Mathematic, Scientific and Technical Literacy, Europa-Universität Flensburg, Flensburg, Germany

Pub. Date: January 27, 2018

Cite this paper

Dominique Rosenberg, Svenja Pansegrau, Mirco Wachholz, Anja Köppen, Maike Busker and Walter Jansen. Organic Redox-Flow Batteries Using Hair Dyes and Pharmaceuticals. World Journal of Chemical Education. 2018; 6(1):63-71. doi: 10.12691/WJCE-6-1-10

Abstract

In the last few years the number of renewable energy sources (e.g. wind or solar energy) increased drastically. The availability of solar energy depends on the amount of daily sun light and the availability of electric power from wind turbines is linked to the available wind offered by nature. The increase of power from renewable energy sources has to be combined with innovative energy storage systems. Solar, wind and other renewable energy sources are intermittent energy sources. Consequently, with more renewable energy sources the amount of intermittent energy increases, too. Due to this, there is a need for more and more flexible and efficient energy storage systems with high capacities to guarantee the stability of the electric grid. Such energy storage systems, which are discussed right at the moment, are so called flow batteries. This article presents an experimental set-up that demonstrates the functionality of Redox-Flow-Batteries to students in chemistry lessons. Such efficient organic Redox-Flow-Batteries can use hair dyes like Phenylenediamine and pharmaceuticals such as Paracetamol. The decomposition product of Paracetamol, p-Aminophenol proved to be a particular suitable candidate, which is shown via cyclic voltammetry.

Keywords

organic redox-flow-battery, phenylenediamine, paracetamol, p-Aminophenol

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Sterner, M., Stadler, I., Energiespeicherung - Bedarf, Technologien, Integration, Berlin-Heidelberg, 2014, 282-290.
 
[2]  Kurzweil, P., Dietlmeier, O. K., Elektrochemische Speicher - Superkondensatoren, Batterien, Elektrolyse-Wasserstoff, Rechtliche Grundlagen, Wiesbaden, 2015, 343-346.
 
[3]  Huskinson, B., Nawar, S., Gerhardt, M. R., Aziz, M., “Novel Quinone-Based Couples for Flow-Batteries.”, ECS Transactions, 57 (7). 101-105. 2013.
 
[4]  Huskinson, B., Marshak, M.P., Changwon, S., Süleyman, E., Gerhardt, M. R., Galvin, C. J., Chen, X., Aspuru-Guzik, A., Gordon, R. G., Aziz, M., “A metal-free organic - inorganic aqueous flow-battery.”, Nature, 505. 195-198. 2014.
 
[5]  Yang, B., Hoober-Burkhardt, L., Wang, F., Prakash, G. K. S., Narayanan, S. R., “An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples.”, ESC, 161(p). 1371-A1380. 2014.
 
[6]  Rosenberg, D., Behnisch, M., Pansegrau, S., Busker, M., Jansen, W., “Speicherung elektrischer Energie mit neuartigen, organischen Batterien“, Praxis der Naturwissenschaften-Chemie in der Schule, 65 (4). 36-42. 2016.
 
[7]  Rosenberg, D., Wachholz, M., Busker, M., Jansen, W., “Organische Batterien mit Alizarin.“, Praxis der Naturwissenschaften-Chemie in der Schule, 65 (3). 14-19. 2016.
 
[8]  Rosenberg, D., Rehling, A., Busker, M., Jansen, W., “Organische Batterien mit Gallussäure, Pyrogallol und grünem Tee. Schulexperimente zur Demonstration von Flow-Batteries.“, Praxis der Naturwissenschaften-Chemie in der Schule, 65 (6). 22-27. 2016.
 
[9]  Rosenberg, D., Rehling, A., Ernst, D., Busker, M., Jansen, W., “Organische Batterien mit Phloroglucin und Vanillin.“, Praxis der Naturwissenschaften-Chemie in der Schule, 66 (2). 9-14. 2017.
 
[10]  Hamann, C. H., Vielstich, W., Elektrochemie, Wiley-VCH-Verlag, Weinheim, 1998.
 
[11]  Heinze, J., “Cyclic Voltammetry - Electrochemical Spectroscopy”, Angewandte Chemie, 23 (11). 831-918. 1984.
 
[12]  Habekost, A., “Die Elektrochromie von Tetramethylphenylendiamin, Diphenylamin und Methylviologen im Vergleich“, Praxis der Naturwissenschaften-Chemie in der Schule, 64 (8). 13-18. 2015.
 
[13]  Habekost, A., “Experimental Investigations of Alkaline Silver-zinc and Copper-zinc Batteries”, World Journal of Chemical Education, 1 (4). 4-12. 2016.
 
[14]  Klaus, M., Hasselmann, M., Rubner, I., Mößner, B., Oetken, M., “Metall-Luft-Batterien mit einer neuartigen Kohleelektrode“, Chemkon, 21 (2). 65-71. 2014.
 
[15]  Dierks, W., Vennemann, H., “Mit Peroxodisulfat zu extremen Potentialdifferenzen - eine 5V-Monozelle“, Chemkon, 11 (4). 197-198. 2004.
 
[16]  Wegner, C., Pulka, S., Risch, B., “Synthese und Analyse des Arzneistoffs Paracetamol im Schülerlabor“, Chemkon, 23 (3). 131-140. 2016.
 
[17]  Brune, K., “150 Jahre Analgetika. Paracetamol: gefährlicher als man denkt“, Chemie in unserer Zeit, 49. 402-409. 2015.
 
[18]  Deutsche Gesetzliche Unfallversicherung (DGUV), Stoffliste zur Regel Unterricht in Schulen mit gefährlichen Stoffen‘, GDUV Regel 113-019, Berlin, 2010.