World Journal of Chemical Education. 2018, 6(1), 8-13
DOI: 10.12691/WJCE-6-1-2
Special Issue

Vanadium Redox Flow Batteries with Different Electrodes and Membranes

A. Habekost1,

1University of Education Ludwigsburg, Department of Chemistry, Reuteallee 46, D-71634 Ludwigsburg, Germany

Pub. Date: January 27, 2018

Cite this paper

A. Habekost. Vanadium Redox Flow Batteries with Different Electrodes and Membranes. World Journal of Chemical Education. 2018; 6(1):8-13. doi: 10.12691/WJCE-6-1-2

Abstract

There is strong interest in developing batteries to complement lithium ion and fuel cell batteries. Vanadium redox flow batteries (VRFBs) seem to be suitable as large-scale energy storage systems. In these systems, vanadium species act as both electrolyte and active material. Since 1980, the pioneer of VRFB, Maria Skyllos-Kazacos from the University of New South Wales in Australia, has published a vast number of papers about electrode materials, membranes and combinations of vanadium and other redox active species. In chemistry didactics, these investigations pose a significant challenge: it is hard to transform these innovative developments into sound and easy to create experiments. Three experiments are presented here to introduce students to the capabilities of VRFBs with different electrodes and membranes for battery development.

Keywords

Third-Year Undergraduate, Electrochemistry, Hands-on Learning/Manipulatives, Laboratory Instructions

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications, Electrochim. Act. 2013, 101, 27-40.
 
[2]  O. Venery (Ed.) Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles, Springer International Publishing Switzerland 2017.
 
[3]  P. Alotto, M. Guarnieri, F. Moro, Redox flow batteries for the storage of renewable energy: A review, Renew. and Sustain. Energy Rev. 2014, 29, 325-335.
 
[4]  L.H. Thaller, Electrically rechargeable redox flow cells NASA TM X-71540, Lewis Research Center 1974, 1-5.
 
[5]  L. Sanz, D. Lloyd, E. Magdalena, J. Palma, M. Anderson, K. Kontturi, Journal of Power Sources 2015, 278, 175-182.
 
[6]  L. Sanz, D. Lloyd, E. Magdalena, J. Palma, K. Kontturi, Journal of Power Sources 2014, 268, 121-128.
 
[7]  D. Lloyd, E. Magdalena, L. Sanz, L. Murtomaki, K. Kontturi, Preparation of a cost-effective, scalable and energy efficient all-copper redox flow battery, Journal of Power Sources 2015, 292, 87-94.
 
[8]  F.C. Walsh, C. Ponce de Leon, L. Berlouis, G. Nikiforidis, L.F. Arenas-Martinez, D. Hodgson, D. Hall, The Development of Zn-Ce Hybrid Redox Flow Batteries for Energy Storage and Their Continuing Challenges, ChemPlusChem 2015, 80, 288-311.
 
[9]  P.K.Leung, C. Ponce-de-Leon, C.T.J. Low, A.A. Shah, F.C. Walsh, Characterization of a zinc-cerium flow battery, Journal of Power Sources 2011, 196, 5174-5185.
 
[10]  Z. Xie, Q. Liu, Z. Chang, X. Zhang, The developments and challenges of cerium half-cell in zinc-cerium redox flow battery for energy storage, Electrochimica Acta 2013, 90, 695-704.
 
[11]  R.D. McKerracher, C. Ponce de Leon, R.G.A Wills, A.A. Shah, F.C Walsh, Frank,A Review of the Iron-Air Secondary Battery for Energy Storage, ChemPlusChem 2015, 80, 323-335.
 
[12]  B. Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu Jun, V. Sprenkle, W. Wang, Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery, Nature communications 2015, 6, 6303.
 
[13]  M. Wu, M. Liu, G. Long, K. Wan, Z. Liang, T.S.A. Zhao, A novel high-energy-density positive electrolyte with multiple redox couples for redox flow batteries, Applied Energy 2014, 136, 576-581.
 
[14]  Z. Chang, X. Wang, Y. Yang, J. Gao, M. Li, L. Liu, Y. Wu, Journal of Materials Chemistry A: Materials for Energy and Sustainability 2014, 2, 19444-19450.
 
[15]  W. Wang, N. Li, N. Liyu, C. Zimin, L. Baowei, S. Qingtao, Y. Shao, X. Wei, C. Xiaoliang, X. Feng, G.G. Xia, Z. Yang, Journal of Power Sources 2012, 216, 99-103.
 
[16]  B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon, M.J. Aziz, Nature (London, United Kingdom) 2014, 505, 195-198.
 
[17]  R.P. Dowd, V. S. Lakhanapel, T.Van Nguyen, Performance Evaluation of a Hydrogen-Vanadium Reversible Fuel Cell, J. Electrochem. Soc. 2017, 164, 564-567.
 
[18]  S.H. Oh, C.W. Lee, D.H. Chun, J.D. Jeon, J. Shim, K.H. Shin, J.H.A. Yang, A metal-free and all-organic redox flow battery with polythiophene as the electroactive species, Journal of Materials Chemistry A: Materials for Energy and Sustainability 2014, 2, 19994-19998.
 
[19]  B. Huskinson, M.P. Marshak, M.R. Gerhardt, M.J. Aziz, Cycling of a quinone-bromide flow battery for large-scale electrochemical energy storage, ECS Transactions 61, (Stationary and Large Scale Electrical Energy Storage Systems 2014, 27-30.
 
[20]  S. Er, C. Suh, M.P. Marshak, A. Aspuru-Guzik, Computational design of molecules for an all-quinone redox flow battery, Chemical Science 2015, 6, 885-893.
 
[21]  L.M. Surhone, M.T. Tennoe, S.F. Henssonow (Ed.), Vanadium Redox Battery. Flow Battery, Vanadium, University of New South Wales, Oxidation State, Storage Battery, etascript publishing, Mauritius 2010.
 
[22]  A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow applications, Electrochim. Acta 2013, 101, 27-40.
 
[23]  K.J. Kim, M.S. Park, Y-J. Kim, J.H. Kim, S.X Dou, M. Skyllas-Kazacos, J. Mat. Chem. A: Materials for Energy and Sustainability 2015, 3, 16913-16933.
 
[24]  W.H. Wang, X.D., Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery, Electrochim. Acta 2007, 52, 6755-6762.
 
[25]  B. Sun, M. Skyllas-Kazacos, Chemical modification and electrochemical behavior of graphite fibre in acid vanadium solutions, Electrochim. Acta 1991, 36, 513-517.
 
[26]  X.L. Zhou, Y.K. Zeng, X.B. Zhu, L. Wei, T.S. Zhao, J. Power Sources 2016, 325, 329-336.
 
[27]  K.J. Kim, S-W. Lee, T. Yim, J-G- Kim, J.W. Choi, J.H. Kim, M-S. Park, Y-J. Kim, A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries, Sci. Rep. 2014, 4, 6906.
 
[28]  M. Rychcik, M. Skyllas-Kazacos, Journal of Power Sources 1987, 19, 45-54.
 
[29]  F. Rahman, M. Skyllas-Kazacos, Journal of Power Sources 2009, 189, 1212-1219.
 
[30]  M. Skyllas-Kazacos, Maria, C. Peng, M. Cheng, Electrochemical and Solid-State Letters 1999, 121-122.
 
[31]  C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H-Y. Jung, J.H. Yang, H-T. Kim, A review of vanadium electrolytes for vanadium redox flow batteries, Renew. and Sustain. Enegy Rev. 2017, 69, 263-274.
 
[32]  N. Kausar, R. Howe, M. Skyllas-Kazacos, Raman spectroscopy studies of concentrated vanadium redox battery positive electrolytes, J. Appl. Electrochem. 2001, 31, 1327-1332.
 
[33]  M. Skyllas-Kazacos, Journal of Power Sources 2013, 124, 299-302.
 
[34]  M. Skyllas-Kazacos, G. Kazacos, G. Poon, H. Verseema, International Journal of Energy Research 2010, 34, 182-189.
 
[35]  T. Mohammadi, M. Skyllas-Kazacos, Characterization of novel composite membrane for redox flow battery applications, Journal of Membrane Science 1995, 98, 77-87.
 
[36]  H. Prifti, A. Parasuraman, S. Winardi, T.M. Lim, M. Skyllas-Kazacos, Membranes for redox flow battery applications, Membranes 2012, 2, 275-306.
 
[37]  R.S. Nicholson, I. Shain, Theory of Stationary Electrode Polarography Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems, Adv. Anal. Chem. 1964, 36, 706-723.
 
[38]  C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H-Y. Jung, A review of vanadium electrolytes for vanadium redox flow batteries, Renewable and Sustainable Energy Reviews 2017, 69, 263-274.