World Journal of Chemical Education. 2018, 6(3), 134-144
DOI: 10.12691/WJCE-6-3-6
Original Research

The Analgesic Metamizole (Dipyrone) and Its Related Products Antipyrine, 4-Aminoantipyrine and 4-Methylaminoantipyrine. Part 1: Mass Spectrometric and Electrochemical Detection

Achim Habekost1,

1Department of Chemistry, University of Ludwigsburg, Ludwigsburg, Germany

Pub. Date: July 11, 2018

Cite this paper

Achim Habekost. The Analgesic Metamizole (Dipyrone) and Its Related Products Antipyrine, 4-Aminoantipyrine and 4-Methylaminoantipyrine. Part 1: Mass Spectrometric and Electrochemical Detection. World Journal of Chemical Education. 2018; 6(3):134-144. doi: 10.12691/WJCE-6-3-6

Abstract

A drastic increase in the consumption of pharmaceuticals has resulted in a high load of pharmaceuticals in wastewater. Many pharmaceuticals are non-biodegradable and are resistant to conventional wastewater treatments. For this reason there is an obvious need to first detect these substances and, second, to detoxify them. Metamizole is a typical representative of an analgesic non-steroidal. In this first part, a rapid, sensitive, and inexpensive detection method with different commercial screen-printed electrodes (SPEs) were used to quantitatively detect metamizole. (Spectro-)Electrochemical methods such as cyclic voltammetry (CV), electrogenerated chemiluminescence (ECL), and amperometry (AM) are discussed in detail and the sensitivities of the electrochemical methods are compared to the sensitivity of conventional gas chromatography-mass spectrometry detection (GC-MSD). The limit of detection (LOD) is 1 μmol/L for GCMS and 5 to 50 μmol/L for electrochemical detection depending on the method used.

Keywords

metamizole (dipyrone), 4-aminoantipyrine, 4-methylaminoantipyrine, electrochemical detection, mass spectrometric detection

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Kümmerer, K., Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater and surface water by hospitals in relation to other sources - a review, Chemosphere, 45, 957-969, 2001.
 
[2]  Feldmann, D.F., Zuehlke, S., Heberer, T., Occurrence, fate and assessment of polar metamizole (dipyrone) residues in hospital and municipal wastewater, Chemosphere, 71, 1754-1764, 2008.
 
[3]  Thomas, K.V., Dye, C., Schlabach, M., Langford, K.H., Source to sink tracking of selected human pharmaceuticals from two Oslo city hospitals and a wastewater treatment works, J. Environ. Monitor. 9, 1410-1418, 2007.
 
[4]  Gomez, M.J., Petrovic, M., Alba, A.R.F., Barceló, D., Determination of pharmaceuticals of various therapeutica classes by solid-phase extraction and liquid-chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters, J. Chromatogr. A 1114, 224-233, 2006.
 
[5]  Verlicchi, P., Al Aukidy, A., Galletti, A., Petrovic, M., Barceló, D., Hospital effluent: Investigation of the concentration and distribution of pharmaceuticals and environmental risk assessment, Sci. of Total Environ., 430, 109-118, 2012.
 
[6]  Bacil, R.P., Buoro, R.M., da Silva, R.P., Medinas, D.B., Lima, A.W.O., Serrano, S.H.P., Mechanism of Electro-Oxidation of Metamizole using Cyclic Voltammetry at a Glassy Carbon Electrode, ECS Transactions, 43(1), 251-258, 2012.
 
[7]  Moldovan, Z., Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania, Chemosphere, 64, 1808-1817, 2006.
 
[8]  Gyenge-Szabo, Z., Szoboszlai, N., Frifyes, D., Zaray, G., Mihucz, V.G., Monitoring of four dipyrone metabolites in communal wastewater by solid phase extraction liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry, J. Pharmaceut. and Biomed. Anal., 90, 58-63, 2014.
 
[9]  Zhang, C., Zhang, L., Cao, S., Jiang, Z., Wu, H., Yan, M., Zhang, X., Jiang, S., Xue, F., Simultaneous determination of residues of dipyrone metabolites in goat tissue by hydrophilic interaction liquid chromatography tandem mass spectrometry, Food Chem. 196, 83-89, 2016.
 
[10]  Anatas, P.T., Warner, J.C., Green Chemistry: Theory and Practice, Oxford University Press, New York, p. 30, 1998.
 
[11]  Hjereresen, D. L., Schutt, D.L., Boese, J.M., Green Chemistry and Education, J. Chem. Educ. 77 (12), 1543-1547, 2000.
 
[12]  Hill, J., Kumar, D.D., Verma, R.K., Challenges for Chemical Education: Engaging with Green Chemistry and Environmental Sustainability, J. Chem. Educ. 86 (1), 24-31, 2013.
 
[13]  Stearns, C., Environmental Chemistry in the High School Curriculum, J. Chem. Educ. 65 (3), 232-234, 1988.
 
[14]  Habekost, A. Investigations of some reliable electrochemiluminescence systems on the basis of tris(bipyridyl)ruthenium(II) for HPLC analysis, World J. Chem. Educ. 4, 13-20, 2016.
 
[15]  Bacil, R.P., Buoro, R.M., Campos, O.S., Ramos, M.A., Sanz, C.G., Serrano, S.H.P., Electrochemical behavior of dipyrone (metamizol) and others pyrazolones, Electrochim. Act. 273, 358-366, 2018.
 
[16]  Isaacs, R.C.A., Harper, M.M., Miller, E.C., Analytical challenge in the confirmative identification of dipyrone as an adulterant in illicit drug sample, Forensic Sci. Int. 270, 185-192, 2017.
 
[17]  Rogosch, T., Sinning, C., Podlewski, A., Watzer, B., Schlosburg, J., Lichtman, A.H., Cascio, M.G., Bisogno, T., Di Marzo, V., Nüsing, R., Imming, P., Novel bioactive metabolites of dipyrone (metamizol), Bioorg. & Med. Chem., 20, 101-107, 2012.
 
[18]  Zitz, E., Spiteller, G., Location of Functional Groups in Antipyrine Metabolites by Mass Spectrometry, Biomed. Mass. Spectro., 4, 155-158, 1977.
 
[19]  Dadamos, T.R.L., Freitas, B.H., Genova, D.H.M., Espirito-Santo, R.D., Gonzales, E.R.P., Lanfredi, S., Teixeira, M.F.S., Electrochemical characterization of the paste carbon modified electrode with KSr2Ni0.75O15- solid in catalytic oxidation of the dipyrone, Sens. and Act. B, 169, 267-273, 2012.
 
[20]  Bacil, R.P., Buoro, R.M., da Silva, R.P., Medinas, D.B., Lima, A.W.G., Serrano, S.H.P., Mechanism of electro-oxidation of metamizol using cyclic voltammetry at a glassy carbon electrode, ECS Trans. Electrochem. Soc. 43, 251-258, 2012.
 
[21]  Marcolino-Junior, L.H., Bergamini, M.F., Teixeira,, M.F.S., Cavalheiro, E.T.G., Fatibello-Filho, O., Flow injection amperometric determination of dipyrone in pharmaceutical formulations using a carbon paste electrode, Farmaco, 58, 999-1004, 2003.
 
[22]  Basaez, L., Peric, I.M., Jara, P.A., Soto, C.A., Contreras, D.R., Aguirre, C., Vanysek, P., Electrochemical and electrophoretic study of sodium metamizol, J. Chil. Chem Soc. 53, 1572-1575, 2008.
 
[23]  Munoz, R.A.A., Matos, R.C., Angnes, L, Amperometric Detection of Dipyrone in Pharmaceutical Formulations with a Flow Cell Containing Gold Electrodes from Recordable Compact Discs, J. Pharma. Sci., 90, 1972-1977, 2001.
 
[24]  Baranowska, I., Markowski, P., Gerle, A., Baranowski, J., Determination of selected drugs in human urine by differential pulse voltammetry technique, Bioelectrochem. 73, 5-10, 2008.
 
[25]  Miao, W., Choi, J.P., Bard, A. J., Electrogenerated Chemiluminescence 69: The Tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System Revisited - A New Route Involving TPrA•+ Cation Radicals, J. Am. Chem. Soc., 124(48), 14478-14485, 2002.
 
[26]  Kapturkiewicz, A., Electrogenerated chemiluminescence from the tris(2,2'-bipyridine)ruthenium(II) complex, Chem. Phys. Lett. 236, 389-394, 1995.
 
[27]  Hercules, D.M., Lytle, F.E., Chemiluminescence from reduction reactions, J. Am. Chem. Soc., 88, 4795-4796, 1966.
 
[28]  Richter, M.M., Electrochemiluminescence (ECL), Chem. Rev. 104, 3003-3036, 2004.
 
[29]  Parveen, S., Aslam, M.S., Hu, L., Xu, G., Electrogenerated Chemiluminescence. Protocols and Applications, Springer, Heidelberg, 2013.
 
[30]  Bard, A.J. (Ed.), Electrogenerated Chemiluminescence, Marcel Dekker, New York, 2004.
 
[31]  Perez-Ruiz, T., Lozano, C.M, Tomás V., Flow-injection determination of Novalgin using amperometric detection at a glassy carbon electrode, J. Pharm & Biomed. Anal., 12 (9), 1109-1113, 1994.
 
[32]  Burcinova, A., Tichy, M., Pacakova, V., Stulik, K., Application of amperometric detechtion to the high-performance liquid chromatographic determination of antipyrine and 4-aminoantipyrine in urine, J. Chromatogr. 455, 420-424, 1988.