World Journal of Chemical Education. 2019, 7(2), 109-119
DOI: 10.12691/WJCE-7-2-11
Special Issue

Rapid Synthesis of Yellow Graphite Oxide - One-Step Electrochemical Oxidation of Graphite in Organic Solvents

Andreas Schedy1, , Beau Matyas1 and Marco Oetken1

1Department of Chemistry, Physics, Technology and their teaching methodologies, University of Education Freiburg, Kunzenweg 21, 79117 Freiburg im Breisgau, German

Pub. Date: April 11, 2019

Cite this paper

Andreas Schedy, Beau Matyas and Marco Oetken. Rapid Synthesis of Yellow Graphite Oxide - One-Step Electrochemical Oxidation of Graphite in Organic Solvents. World Journal of Chemical Education. 2019; 7(2):109-119. doi: 10.12691/WJCE-7-2-11

Abstract

Graphite oxide is the intermediate in the synthesis of the so-called "miracle material" of the 21st century, graphene. The synthesis of highly oxidized, yellow graphite oxide is hitherto only possible via partially toxic and explosive wet-chemical processes. Therefore, the implementation of the topic graphene in school and university lessons was not possible. Due to the existing risks and the long synthesis time, the currently prevalent synthesis methods of graphite oxide are a major problem not only for teaching but also for scientific research. The authors present a novel electrochemical synthesis process of highly oxidized, yellow graphite oxide, which completely avoids the use of corrosive or toxic substances. The synthesis time is only a few minutes and the preparation of the material can be easily carried out. Therefore, Graphene can now be easily synthesized and taught in school and university.

Keywords

graphene, graphene oxide, structure-property relationships

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Lau, C. N., Bao, W., Velasco, J. (2012). Properties of suspended graphene membranes. Materials Today 15/6, 238-245.
 
[2]  Geim, A. K., Novoselov, K. S. (2007). The rise of graphene. Nature Materials 6/3, 183-191.
 
[3]  Larciprete, R., Fabris, S., Sun, T., Lacovig, P., Baraldi, A., Lizzit, S. (2011). Dual path mechanism in the thermal reduction of graphene oxide. Journal of the American Chemical Society 133/43, 17315-17321.
 
[4]  Kumar, P. V., Bardhan, N. M., Tongay, S., Wu, J., Belcher, A. M., Grossman, J. C. (2014). Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nature chemistry 6/2, 151-158.
 
[5]  Chua, C. K., Pumera, M. (2014). Chemical reduction of graphene oxide. A synthetic chemistry viewpoint. Chemical Society reviews 43/1, 291-312.
 
[6]  Boehm, H. P., Eckel, M., Scholz, W. (1967). Untersuchungen am Graphitoxid V. ber den Bildungsmechanismus des Graphitoxids. Z. Anorg. Allg. Chem. 353/5-6, 236-242.
 
[7]  Hummers, W. S., Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society 80/6, 1339.
 
[8]  Brodie, B. C. (1859). On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London 149, 249-259.
 
[9]  Staudenmaier, L. (1898). Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft 31/2, 1481-1487.
 
[10]  Pei, S., Wei, Q., Huang, K., Cheng, H.-M., Ren, W. (2018). Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature communications 9/1, 145.
 
[11]  Santhanam, R., Noel, M. (1998). Electrochemical intercalation of cationic and anionic species from a lithium perchlorate–propylene carbonate system—a rocking-chair type of dual-intercalation system. Journal of Power Sources 76/2, 147-152.
 
[12]  Schnyder, B., Alliata, D., Kötz, R., Siegenthaler, H. (2001). Electrochemical intercalation of perchlorate ions in HOPG. An SFM/LFM and XPS study. Applied Surface Science 173/3-4, 221-232.
 
[13]  Tian, Z., Yu, P., Lowe, S. E., Pandolfo, A. G., Gengenbach, T. R., Nairn, K. M., Song, J., Wang, X., Zhong, Y. L., Li, D. (2017). Facile electrochemical approach for the production of graphite oxide with tunable chemistry. Carbon 112, 185-191.
 
[14]  Beck, F., Jiang, J., Krohn, H. (1995). Potential oscillations during galvanostatic overoxidation of graphite in aqueous sulphuric acids. Journal of Electroanalytical Chemistry 389/1-2, 161-165.
 
[15]  Besenhard, J. O., Fritz, H. P. (1983). Elektrochemie schwarzer Kohlenstoffe. Angewandte Chemie 95/12, 954-980.
 
[16]  Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., Mullen, K. (2014). Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Supporting Information. Journal of the American Chemical Society 136/16, 6083-6091.
 
[17]  Liu, J., Poh, C. K., Zhan, D., Lai, L., Lim, S. H., Wang, L., Liu, X., Gopal Sahoo, N., Li, C., Shen, Z., Lin, J. (2013). Nano Energy 2/3, 377-386.
 
[18]  Hofmann, U., Frenzel, A. (1930). Quellung von Graphit und die Bildung von Graphitsäure. Ber. dtsch. Chem. Ges. A/B 63/5, 1248-1262.
 
[19]  Dau, H., Limberg, C., Reier, T., Risch, M., Roggan, S., Strasser, P. (2010). The Mechanism of Water Oxidation. From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem 2/7, 724-761.
 
[20]  Besenhard, Fritz (1975). Über die Reversibilität der elektrochemischen Graphitoxydation in Säuren. Zeitschrift für anorganische und allgemeine Chemie 416, 106-116.
 
[21]  Zhou, T., Chen, F., Liu, K., Deng, H., Zhang, Q., Feng, J., Fu, Q. (2011). A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology 22/4, 45704.
 
[22]  Sun, L., Yu, H., Fugetsu, B. (2012). Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. Journal of hazardous materials 203-204, 101-110.
 
[23]  Martinez, C. R., Iverson, B. L. (2012). Rethinking the term “pi-stacking”. Chem. Sci. 3/7, 2191.
 
[24]  Zhao, W., Fang, M., Wu, F., Wu, H., Wang, L., Chen, G. (2010). Preparation of graphene by exfoliation of graphite using wet ball milling. J. Mater. Chem. 20/28, 5817.
 
[25]  Yang, X., Zhu, J., Qiu, L., Li, D. (2011). Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Advanced materials (Deerfield Beach, Fla.) 23/25, 2833-2838.
 
[26]  Fan, Z.-J., Kai, W., Yan, J., Wei, T., Zhi, L.-J., Feng, J., Ren, Y.-M., Song, L.-P., Wei, F. (2011). Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS nano 5/1, 191-198.