World Journal of Chemical Education. 2019, 7(2), 166-171
DOI: 10.12691/WJCE-7-2-16
Special Issue

Teaching Organic Electronics - Part II: Quick & Easy Synthesis of the (Semi-)Conductive Polymer PEDOT: PSS in a Snap-Cap Vial

Amitabh Banerji1, , Stephan Kirchmeyer2, Klaus Meerholz2, 3 and Fabian Scharinger1

1Institute of Chemistry Education, University of Potsdam, Potsdam, Germany

2COPT Center, University of Cologne, Cologne, Germany

3Department of Chemistry, University of Cologne, Cologne, Germany

Pub. Date: April 11, 2019

Cite this paper

Amitabh Banerji, Stephan Kirchmeyer, Klaus Meerholz and Fabian Scharinger. Teaching Organic Electronics - Part II: Quick & Easy Synthesis of the (Semi-)Conductive Polymer PEDOT: PSS in a Snap-Cap Vial. World Journal of Chemical Education. 2019; 7(2):166-171. doi: 10.12691/WJCE-7-2-16

Abstract

Organic Electronics is an interdisciplinary and cutting-edge research field leading to innovative applications and products like ultra-thin and high-efficient organic LED displays, light-weight and transparent organic solar cells or printed organic field-effect transistors (to name only few). The core functional materials in such devices are organic (semi-)conductors like conjugated polymers, oligomers or small molecules. As a sequel to our former contribution in the World Journal of Chemical Education (Vol 6, No. 1), we present in this paper a hands-on, quick and easy experiment for the synthesis of the (semi-)conductive polymer PEDOT:PSS. This experiment can be integrated into laboratory trainings and enriches the portfolio for teachers and lab-instructors dealing with organic electronics.

Keywords

PEDOT:PSS, OLED, conjugated polymers, organic semiconductors, future technology

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Banerji, A., Tausch, M.W., Scherf, U., Classroom Experiments and Teaching Materials on OLEDs with Semiconducting Polymers. Educacion Quimica 2012, 24 (1), 17-22.
 
[2]  Banerji, A., Tausch, M. W., Scherf, U., Fantastic Plastic – von der Cola-Flasche zur organischen Leuchtdiode. CHEMKON, 2012, 19(1), 7-12.
 
[3]  Banerji, A., Dörschelln, J., Schwarz, D., Organische Leuchtdioden im Chemieunterricht, Chemie in unserer Zeit 2018, 52 (1), 34-41.
 
[4]  Banerji, A., Organische Elektronik als Lehrstoff, Nachr. Chemie 2017, 65 (7-8), 807-809.
 
[5]  Banerji, A., Schönbein, A. K., Wolff, J., OLED Reloaded: Die Synthese des Halbleiterpolymers MEH‐PPV als Schulversuch, CHEMKON 2018, 24 (4), 251-256.
 
[6]  Banerji, A., Schönbein, A.-K., Halbrügge, L., Teaching Organic Electronics: The Synthesis of the Conjugated Polymer MEH-PPV in a Hands-on Experiment for Undergraduate Students, World Journal of Chem. Educ. 2018, 6 (1), 54-62.
 
[7]  Heeger, A. J., Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel Lecture), a) Angew. Chem. 2001, 113(14), 2660-2682 b) Angew Chem Int Ed 2001, 40(14), 2591-2611.
 
[8]  Shirakawa, H. The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel Lecture), a) Angew Chem 2001, 113(14), 2642-2648 b) Angew Chem Int Ed 40(14), 2575-2580.
 
[9]  MacDiarmid, A. G. , "Synthetic Metals": A novel role for organic polymers (Nobel Lecture). a) Angew Chem 113(14), 2649-2659 b) Angew Chem Int Ed 2001, 40(14), 2581-2590.
 
[10]  Elschner, A., Kirchmeyer, S., Lövenich, W., Merker, U., Reuter, K., PEDOT: Principles and Applications of an Intrinsically Conductive Polymer, 2010, CRC Press, Boca Raton.
 
[11]  Merker, U., Wussow, K., Kirchmeyer, S., Schnitter, C. and Lerch, K.. Manufacturing Process for Low ESR Polymer Electrolyte Capacitors. Proceedings of the 17th Passive Components Conference CARTS Europe, 2003, 79, Stuttgart.
 
[12]  Reed, E., Marshall, J. and Hahn, R., How low can you go – tantalum polymer capacitors with ESR under 7 mΩ. In: Proceedings of the 16th passive components symposium CARTS Europe, 2002, 60-67, Electronic Components Institute Internationale Ltd., Port St. Laurent.
 
[13]  Jonas, F. and Wolf, G.-D.. EP 553671 (Bayer AG). Prior: 29 January 1992.
 
[14]  Frisch, K. C. and Patsis, A., Triboelectrification of Polymers. In: Electrical Properties of Polymers, Ed. D. A. Seanor. 1982, 37-58. Academic Press, New York.
 
[15]  Jonda, C., Mayer, A. B. R., Stolz, U., Elschner, A. and Karbach, A., Surface roughness effects and their influence on the degradation of organic light emitting devices, J Mater Sci 2000, 35, 5645-5651.
 
[16]  Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackey, K., Friend, R. H., Burns, P. L. and Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539-541.
 
[17]  Aernouts, T., Geens, W., Poortmans, J.. Heremans, P., Borghs, S. and Mertens, R., Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions“, Thin Solid Films 2002, 403, 297-301.
 
[18]  Zhang, F. L., Gadisa, A., Inganaes, O., Svensson, M. and Andersson, M. R., Influence of buffer layers on the performance of polymer solar cells. Appl. Phys. Lett 2004, 84, 3906-3908.
 
[19]  Yoo, I., Lee, M., Lee, C., Kim, D. W., Moon, I. S. and Hwang, D. H., The effect of a buffer layer on the photovoltaic properties of solar cells with P3OT:fullerene composites. Synth. Met. 2005, 153, 97-100.
 
[20]  Arias, A. C., Granström, M., Thomas, D. S., Petritsch, K. and Friend, R. H. Doped conducting-polymer-semiconducting-polymer interfaces: Their use in organic photovoltaic devices. Phys. Rev. B 1999, 60(3), 1854-1860.
 
[21]  Organic Photovoltaics: Materials, Device Physics, and manufacturing Technologies, ed. Brabec, C., Dyakonov, V. and Scherf, U., 2008, Wiley-VCH GmbH & Co. KGaA, Weinheim.
 
[22]  Shaheen, S. E., Ginley, D. S. and Jabbour, G. E., Organic-Based Photovoltaics: Toward Low-Cost Power Generation. MRS Bull. 2005, 30, 10-19.
 
[23]  Heuer, H. W., Wehrmann, R. and Kirchmeyer, S., Electrochromic Window Based on Conducting Poly(3,4-ethylenedioxythiophene)-Poly(styrene sulfonate). Adv. Funct. Mater. 2002, 12(2), 89-94.
 
[24]  Heeger, A. J. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials. J. Phys. Chem. B. 2001, 105(36), 8475-8491.
 
[25]  Jonas, F. and Krafft, W., EP 440957 (Bayer AG), Prior: 20 December 1990.
 
[26]  a) Tracht, U., Bayer AG, Leverkusen, Personal Communication 2001, b) Kirchmeyer, S., Reuter, K. and Simpson, J., Poly(3,4-Ethylenedioxythiophene) - Scientific Importance, Remarkable Properties, and Applications. In: Handbook of Conducting Polymers 3rd ed. Ed. T. A. Skotheim and J. A. Reynolds, 10-1-10-22. 2007, CRC Press Boca Raton.
 
[27]  Zotti, G., Zecchin, S., Schiavon, G., Louwet, F., Groenendaal, L., Crispin, X., Osikowicz, W., Salaneck, W. and Fahlman, M., Macromolecules 2003, 36, 3337-3344.
 
[28]  Aasmundtveit, K. E., Samuelsen, E. J., Pettersson, L. A. A., Inganäs, O., Johansson, T. and Feidenhans'l, R., Structure of thin films of poly(3,4-ethylene dioxythiophene). Synth. Met. 1999, 101(1-3), 561-564.
 
[29]  Hwang, J., Tanner, D. B., Schwendeman, I. and Reynolds, J. R.. Optical properties of nondegenerate ground-state polymers: Three dioxythiophene-based conjugated polymers Phys. Rev. B 2003, 67(11), 115205-1–115205-10.
 
[30]  Ouyang, J., Xu, Q., Chu, C.-W., Yang, Y., Li, G. and Shinar, J., On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 2004, 45 (25), 8443-8450.
 
[31]  Jonas, F., Karbach, A., Muys, B., van Thillo, E., Wehrmann, R., Elschner, A. and Dujardin, R., EP 686662 (Bayer AG), Prior: 6 May 1994.
 
[32]  Jönsson, S. K. M., Birgerson, J., Crispin, X., Greczynski, G., Osikowicz, W., Denier van der Gon, A. W., Salaneck, W. R. and Fahlman, M., The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synth. Met. 2003, 139(1), 1-10.
 
[33]  Giraudet, L., Fauveaux, S., Simonetti, O., Petit, C., Blary, K., Maurel, T., and Belkhir, A., Spin-coated conductive polymer film resistivity measurement using the TLM method. Synth. Met. 2006, 156(11-13), 838-884.
 
[34]  Bantikassegn, W. and Inganäs, O., Electronic properties of junctions between aluminum and doped poly(3,4-ethylenedioxythiophene). Thin Solid Films 1997, 293(1-2), 138-143.
 
[35]  Jönsson, S. K. M., Salaneck, W. R. and Fahlman, M., X-ray photoelectron spectroscopy study of the metal/polymer contacts involving aluminium and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) derivatives. J. Mater. Res. 2003, 18(5), 1219-1226.
 
[36]  Scherr, D., Plastiksolarzellen-ein Experiment für die Schule?. CHEMKON 2014, 21(1), 31-36.
 
[37]  Rendon-Enriquez, I. N., Tausch, M. W., Scherf U., Elektrochrome Fenster mit leitenden Polymeren.Chem. unserer Zeit 2016, 50, 400-405.
 
[38]  Hertel, D. Müller, C.D., Meerholz, K. Organische Leuchtdioden: Bilderzeugung, ChiuZ 2005, 39 (5), 336-347.