World Journal of Chemical Education. 2019, 7(2), 53-64
DOI: 10.12691/WJCE-7-2-4
Special Issue

Simulation and Fitting of Cyclic Voltammetry and Chronoamperometry Curves of Electrochemical Reactions with Different Mechanisms — A Didactic Perspective

Achim Habekost1,

1University of Ludwigsburg, Department of Chemistry, Ludwigsburg, Germany

Pub. Date: April 11, 2019

Cite this paper

Achim Habekost. Simulation and Fitting of Cyclic Voltammetry and Chronoamperometry Curves of Electrochemical Reactions with Different Mechanisms — A Didactic Perspective. World Journal of Chemical Education. 2019; 7(2):53-64. doi: 10.12691/WJCE-7-2-4

Abstract

Electrochemical simulations are presented to introduce students to the capabilities of cyclic voltammetry (CV). The systems chosen involve one and two-electron transfers, and can be delineated with CV as being reversible, quasi-reversible, or irreversible. The rate constants for the electron transfer can be estimated by the theory of Nicholson and Shain. DigiElch, professional® provides the opportunity of fitting experimental CVs after assuming a reaction scheme. We will demonstrate data fitting for two different mechanisms, electron transfer E and electron transfer followed by a chemical reaction with a subsequent electron transfer of the product ECE.

Keywords

(Spectro-)Electrochemistry, electrochemical simulation and fitting with DigiElch, professional®

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  R.G. Compton, C. Batchelor-McAuley, E.J.F. Dickinson, Understanding Voltammetry. Problems and Solutions, Imperial College Press, London, 2012, p. 52.
 
[2]  R.G. Compton, E. Laborda, K.R. Ward, Understanding Voltammetry: Simulation of electrode processes, Imperial College Press, London, 2014.
 
[3]  G.A. Mabbott, An Introduction to Cyclic Voltammetry, J. Chem. Educ. 60, 607-702. (1983).
 
[4]  P.T. Kissinger, W.R. Heineman, Cyclic Voltammetry, J.Chem.Educ. 60, 702-706 (1983).
 
[5]  J.J. van Benschoten, Y.T. Lewis, W.R. Heineman, D.A. Roston, P.T. Kissinger, Cyclic Voltammetry Experiments, J.Chem.Educ.60, 772-776 (1983).
 
[6]  A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Chemistry), Wiley and Sons, 2001.
 
[7]  D.K. Gosser, Jr, Cyclic Voltammetry. Simulation and Analysis of Reaction Mechanism, VCH, Weinheim, Germany, 1993.
 
[8]  A.C. Fisher, Electrode Dymanics, Oxford Science Publication, New York, 2009.
 
[9]  C.M.A. Brett, A.M. Oliveira Brett, Electroanalysis, Oxford Science Publication, New York, 2005
 
[10]  H. Matsuda, Y. Ayabe, The theory of the cathode – ray polarography of Randles-Sevcik, Zeitschrift fuer Elektrochemie and Angewandte Physikalische Chemie 59, 494-503 (1955).
 
[11]  R.S. Nicholson, I. Shain, Theory of Stationary Electrode Polarography Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems, Adv. Anal. Chem. 36(4), 706-723 (1964).
 
[12]  J. Heinze, Cyclovoltammetrie - Die “Spektroskopie” des Elektrochemikers, Angewandte Chemie 96, 823-840 (1984).
 
[13]  A. Bard, A., L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Chemistry), Wiley and Sons, 2001.
 
[14]  M. Perdicakis, H. Aubriet, A. Walcarius, Use of a commercially available wood-free resin pencil as convenient electrode for the 'voltammetry of microparticles' technique, Electroanalysis 16(24), 2042-2050 (2004).
 
[15]  Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical Energy Storage for Green Grid, Chem. Rev. 111 (5), 3577-3613 (2011).
 
[16]  M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, M. Saleem, Progress in Flow Battery Research and Development J. Electrochem. Soc. 158(8), R55-R79 (2011).
 
[17]  A.Z. Weber, M.M. Mench, J.P. Meyers, P.N. Ross, J.T. Gostick, Q.Liu, Redox flow batteries: a review, J. of Appl. Electrochem. 41, 1137 (2011).
 
[18]  P. Alotto, M. Guarnieri, F.Moro, Redox flow batteries for the storage of renewable energy: A review, Renewable and Sustainable Energy Reviews, 29, 325-335 (2014).
 
[19]  B. Bennett, J. Chang, A.J. Bard, Mechanism of the Br-/Br2 Redox Reaction on Platinum and Glassy Carbon Electrode in Nitrobenzene by Cyclic Voltammetry, Electrochim. Act. 219, 1-9 (2016).
 
[20]  G.D. Allen, M.C. Buzzeo, C. Villagran, C. Hardacre, R.G. Compton, A mechanistic study of the electro-oxidation of bromide in acetonitrile and the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide at platinum electrodes, J. Electroanal. Chem. 575, 311- (2005).
 
[21]  G.D. Allen, M.C. Buzzeo, I.G. Davies, C. Villagran, C. Hardacre, R.G. Compton, A comparative study on the reactivity of electrogenerated bromine with cyclohexene in acetonitrile and the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide, J. Phys. Chem. B 108, 16322. (2004).
 
[22]  D. Halasz, C. Visy, A. Szucs, M. Novak, Bromide ion oxidation on various Pt surfaces, React. Kinet. Catal. Lett. 48, 177-188 (1992).
 
[23]  S. Shin, D. Jung, J. Chae, J. Chang, Stochastic electrochemical analysis of electrochemically generated ethylpyridinium polybromide droplets: Evidence of Br- / Br3- / Br2 electrooxidation in quarternary polybromide, J. Electroanal. Chem. 802, 123-130 (2017).
 
[24]  F. Miomandre, P. Audebert (eds.), Luminescence in Electrochemistry. Applications in Analytical Chemistry, Physics and Biology, Springer, Chsam, Switzerland, 2017.
 
[25]  Bard, A. J. (Ed.), Electrogenerated Chemiluminescence, Marcel Dekker, New York, 2004.
 
[26]  M.M. Richter, Electrochemiluminescence (ECL), Chem. Rev. 104, 3003-3036 (2004).
 
[27]  S. Parveen, M.S. Aslam, L. Hu, G. Xu, Electrogenerated Chemiluminescence. Protocols and Applications, Springer, Heidelberg, Germany, 2013.
 
[28]  A.S.N. Murthy, K.S. Reddy, Cyclic voltammetric studies of methylene blue in presence of ferric ion: catalytic currents, Electrochimica Acta 28(11), 1677-1680 (1983).