World Journal of Chemical Education. 2019, 7(2), 90-95
DOI: 10.12691/WJCE-7-2-8
Special Issue

Shaping the future with Rare Earth Elements – Model Experiments for “damage monitoring” with [Eu(DBM)4TEA] and for Recycling of Neodymium(III) Sulfate from Hard Disk Magnets

Markus Prechtl1, and Roman Schmidt1

1Department of Chemistry, Education in Chemistry, TU Darmstadt, Darmstadt, Germany

Pub. Date: April 11, 2019

Cite this paper

Markus Prechtl and Roman Schmidt. Shaping the future with Rare Earth Elements – Model Experiments for “damage monitoring” with [Eu(DBM)4TEA] and for Recycling of Neodymium(III) Sulfate from Hard Disk Magnets. World Journal of Chemical Education. 2019; 7(2):90-95. doi: 10.12691/WJCE-7-2-8

Abstract

Rare Earth Elements (REEs: Sc, Y, La–Lu) are found in numerous future-oriented applications such as in magnets for green technologies and in fluorescing materials. A shortage of resources is already forecast for diverse REEs, which suggests it may be necessary to recycle these elements and optimize technologies. Both aspects will be addressed in this paper. Model experiments with regards to damage monitoring using [Eu(DBM)4TEA] and the recycling of neodymium(III) sulfate in hard disk magnets will also be presented. These are experiments for teachers and students who already have advanced experimental experience, such as trainees at vocational schools.

Keywords

Rare Earth Elements (REEs), material criticality, recycling, damage monitoring

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Eliseeva, S.V. and Bünzli, J. -C.G, Rare Earth: Jewels for Functional Material of the Future, New Journal of Chemistry, 35(6). 1165-1176. 2011.
 
[2]  Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G. and Liu, J.P., Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient, Advanced Materials, 23(7). 821-842. 2011.
 
[3]  Höppe, H.A., Recent Developments in the Field of Inorganic Phosphors, Angewandte Chemie (International Edition), 48(20). 3572-3582. 2009.
 
[4]  Terraschke, H. and Wickleder, C., UV, Blue, Green, Yellow, Red, and Small: Newest Developments on Eu2+-Doped Nanpophosphors, Chemical Reviews, 115(20). 11352-11378. 2015.
 
[5]  Bischoff, L., Stephan, M., Birkel, C.S., Litterscheid, C.F., Dreizler, A. and Albert, B., Multiscale and luminescent, hollow microspheres for gas phase thermometry, Scientific Reports, 8(602). 1-9. 2018.
 
[6]  Hollerman, W.A., Fontenot, R.S., Bhat, K.N., Aggarwal, M.D., Guidry, C.J. and Nguyen, K.M., Review of Triboluminescence Impact Research at Projectile Speeds of 1 m/s to 6 km/s, Procedia Engineering, 58. 392-400. 2013.
 
[7]  Teotonio, E.E.S., Faustino, W.M., Brito, M.F., Felinto, M.C.F.C., Moura, J.L., Costa, I.F., Santos, P.R.S., Mechanoluminescence of Coordination Compounds, in D.O. Olawale, O.O.I. Okoli, R.S. Fontenot, W.A. Hollerman (Eds.), Triboluminescence: Theory, synthesis, and application, Springer, 39-63. 2016.
 
[8]  Sage, I. and Bourhill, G., Triboluminescent materials for structural damage monitoring, Journal of Material Chemistry, 11(2). 231-245. 2001.
 
[9]  Olawale, D.O., Okoli, O.O.I., Fontenot, R.S. and Hollerman, W.A., Triboluminescence: Theory, synthesis, and application, Springer. 2016.
 
[10]  Jahn, B. and Daumann, L.J., Die faszinierende bioanorganische Chemie der Selten-Erd-Elemente. Chemie in unserer Zeit, 52(3). 150-158. 2018.
 
[11]  Hatje, V., Bruland, K.W. and Flegal, A.R., Increases in Anthropogenic Gadolinium Anomalies and Rare Earth Element Concentrations in San Francisco Bay over a 20 Year Record, Environmental Science & Technology, 50(8). 4159-4168. 2016.
 
[12]  Lorenz, T. and Bertau, M., Recycling of Rare Earth Elements. Physical Sciences Reviews, 2(1). 1-24. 2017.
 
[13]  Gauß, R., Diehl, O., Brouwer, E., Buckow, A., Güth, K. and Gutfleisch, O., Verfahren zum Recycling von seltenerdhaltigen Permanentmagneten, Chemie Ingenieur Technik, 87(11). 1477-1485. 2015.
 
[14]  National Research Council (Eds.), Minerals, Critical Minerals, and the U.S. Economy, The National Academies Press. 2008.
 
[15]  Marschall, L. and Holdinghausen, H., Seltene Erden. Umkämpfte Rohstoffe des Hightech-Zeitalters, Oekom Verlag, 2017.
 
[16]  Schebek, L. and Becker, B.F., Substitution von Rohstoffen – Rahmenbedingungen und Umsetzung, in P. Kausch, M. Bertau, J. Gutzmer and J. Matschullat (Eds.), Strategische Rohstoffe – Risikovorsorge, Springer, 3-12. 2014.
 
[17]  Sawatzki, S., Der Korngrenzendiffusionsprozess in nanokristallinen Nd-Fe-B-Permanentmagneten. Doctoral thesis 2016, http://tuprints.ulb.tu-darmstadt.de/id/eprint/5221 [03.03.2019].
 
[18]  Sawatzki, S., Kübel, C., Ener, S. and Gutfleisch, O., Grain boundary diffusion in nanocrystalline Nd-Fe-B permanent magnets with low-melting eutectics, Acta Materialia, 115. 354-363. August 2016.
 
[19]  Reiners, C.S., Kritische Rohstoffe! – Kritische Unterrichtsstoffe? Eine fachdidaktische Reflexion am Beispiel der Seltenen Erden, Naturwissenschaften im Unterricht – Chemie, 28(161). 8-12. 2017.
 
[20]  Bliersbach, M. and Reiners, C.S., “Creating Creativity”: Improving Pre-service Teachers’ Conceptions About Creativity in Chemistry, in K. Hahl, K. Juuti, J. Lampiselkä, A. Uitto and J. Lavonen (Eds.), Cognitive and Affective Aspects in Science Education Research, Springer, 55-68. 2017.
 
[21]  Yang, Y., Walton, A., Sheridan, R., Güth, K., Gauß, R., Gutfleisch, O., Buchert, M., Steenari, B.-M., Van Gerven, T., Jones, P.T. and Binnemans, K., REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review, Journal of Sustainable Metallurgy, 3(3). 122-149. 2017.
 
[22]  Bybee, R.W., Toward an Understanding of Scientific Literacy, in W. Gräber and C. Bolte (Eds.), Scientific literacy – an international symposium, Institut für die Pädagogik der Naturwissenschaften, 37-68. 1997.
 
[23]  National Research Council (Eds.), National Science Education Standards, National Academy Press, 1996.
 
[24]  http://www.esa.int/Our_Activities/Operations/Space_Debris/About_the_Space_Debris_Office [03.03.2019].
 
[25]  Baumbach, E., Chemische Schulversuche mit dem Mikroglasbaukasten, Dümmler, 1997; www.chemie-baumbach.de [03.03.2019]
 
[26]  Fontenot, R.S., Hollermann, W.A., Bhat, K.N. and Aggarwal, M.D., Synthesis and characterization of highly triboluminescent doped europium tetrakis compounds, Journal of Luminescence, 132(7). 1812-1818. 2012.
 
[27]  Donner, S., Schätze im Schrott. WirtschaftsWoche, 38. 76-79. 2013.
 
[28]  Mieger, D. and Prechtl, M., Recycling von Neodym(III)-sulfat aus Festplattenmagneten. Seltenerdelemente im Schülerforschungsprojekt und im Berufsschulunterricht, Naturwissenschaften im Unterricht – Chemie, 28(161). 39-43. 2017.
 
[29]  https://www.iypt2019.org/ [03.03.2019].