World Journal of Chemical Education. 2020, 8(1), 29-39
DOI: 10.12691/WJCE-8-1-4
Special Issue

Digital Learning Tools for Teaching “Alternative Solar Cells with Titanium Dioxide” (ALSO-TiO2) - A Contribution to Sustainable Development Education

Diana Zeller1, , Claudia Bohrmann-Linde1 and Sebastian Kläger2

1Department of Chemistry Education, Bergische Universität Wuppertal, Germany

2Staatliches Seminar für Didaktik und Lehrerbildung Tübingen, Tübingen, Germany

Pub. Date: March 05, 2020
(This article belongs to the Special Issue Transformation of Science Education with ICT)

Cite this paper

Diana Zeller, Claudia Bohrmann-Linde and Sebastian Kläger. Digital Learning Tools for Teaching “Alternative Solar Cells with Titanium Dioxide” (ALSO-TiO2) - A Contribution to Sustainable Development Education. World Journal of Chemical Education. 2020; 8(1):29-39. doi: 10.12691/WJCE-8-1-4

Abstract

The movement “Fridays for Future” is a good indicator for students not only having a very strong interest in sustainability, but also a high motivation to actively discuss this topic. For this reason, it is important for schools to provide the necessary basic knowledge and to give students insight into current research and application within the realm of sustainability education and SDGs. In this article digital learning tools for the concept “Alternative Solar Cells with Titanium Dioxide” (ALSO-TiO2) are presented, that can be used to implement the topic “Solar Cells” in regular chemistry classes. The concept bridges the gap between the galvanic cell as a compulsory subject and dye-sensitized solar cells (DSSC), also known as Grätzel-cells. Thus didactic experiments, so-called photogalvanic cells, are explored with the help of an e-book. In addition, a small eye-tracking study is presented which was carried out in order to develop a new edition of an interactive animation.

Keywords

titanium dioxide, photogalvanic cells, solar cells, sustainable development education, e-book, animation, eye-tracking method, ICT, experimental kit, photochemistry

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Rat für kulturelle Bildung (Hrsg.), JUGEND/YOUTUBE/ KULTURELLE BILDUNG. HORIZONT, 2019 [Online]. Available: https://www.rat-kulturelle-bildung.de/fileadmin/user_ upload/pdf/Studie_YouTube_Webversion_final.pdf [Accessed, Nov. 13, 2019]
 
[2]  Eickelmann, B., Bos, W., Gerick, J., Goldhammer, F., Schaumburg, H., Schwippert, K., Senkbeil, M. & Vahrenhold, J. (Ed.) (2019). ICILS 2018 #Deutschland - Computer- und informationsbezogene Kompetenzen von Schülerinnen und Schülern im zweiten internationalen Vergleich und Kompetenzen im Bereich Computational Thinking. Münster, Waxmann.
 
[3]  Homepage of the Federal Ministry of Education and Research: https://www.bmbf.de/de/wissenswertes-zum-digitalpakt-schule-6496.php [Accessed, Nov. 13, 2019].
 
[4]  Conference of the Ministers of Education and Cultural Affairs (KMK), Bildung in der digitalen Weltstrategie der Kultusministerkonferenz (2017), Available: https://www.kmk.org/fileadmin/Dateien/pdf/PresseUndAktuelles/2017/Strategie_neu_2017_datum_1.pdf [Accessed, Nov. 13, 2019]
 
[5]  Prieto, L.P., Dlab, M.H., Gutiérrez, I., Abdulwahed, M. & Balid, W. Orchestrating technology enhanced learning: a literature review and a conceptual framework Int. J. Technology Enhanced Learning, 3 (6), 583-598, 2011.
 
[6]  IRENA (2019), Global Energy Transformation: A roadmap to 2050, International Renewable Energy Agency, Abu Dhabi. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Glob al_Energy_Transformation_2019.pdf [Accessed, Nov. 13, 2019].
 
[7]  Bohrmann-Linde, C., Zeller, D. Solarzellen ohne Silicium für den Chemieunterricht, Nachrichten aus der Chemie 65, 1236-1239. Dec. 2017.
 
[8]  Zeller, D., Bohrmann-Linde, C. Photosensitizers for photogalvanic cells in the chemistry classroom, World Journal of Chemical Education, 6(1). 36-42. Jan. 2018.
 
[9]  O´Reagan, B., Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737-740. 24. Oct. 1991.
 
[10]  Richter, J., Ulrich, N., Scheiter, K. and Schanze, S. eChemBook: Gestaltung eines digitalen Schulbuchs, Lehren & Lernen. Zeitschrift für Schule und Innovation aus Baden-Württemberg, 7, 23-29. Jul. 2016.
 
[11]  Huwer, J., Bock, A. and Seibert, J. The School Book 4.0: The Multitouch Learning Book as a Learning Companion. American Journal of Educational Research, 6(6), 763-772. Jun. 2018.
 
[12]  Hillmayr, D. et al. Digitale Medien im mathematisch-naturwissenschaftlichen Unterricht der Sekundarstufe. Einsatzmöglichkeiten, Umsetzung und Wirksamkeit, Waxmann, Münster/Paderborn, 2017.
 
[13]  Bohrmann-Linde, C., Krees, S., Tausch, M. W., von Wachtendonk, W. (Ed.): CHEMIE 2000+ Qualifikationsphase, C. C. Buchner, Bamberg, 2014.
 
[14]  Clark, R. C., Mayer, R. E. E-learning and the science of instruction: proven guidelines for consumers and designers of multimedia learning, Pfeiffer, San Francisco, 2011.
 
[15]  Beal, C. R. et al. Evaluation of animal watch: An intelligent tutoring system for arithmetic and fractions, Journal of Interactive Online Learning, 9(1), 64-77. Sep. 2010.
 
[16]  Kallweit, I., Melle, I. Selbsteinschätzungsbögen als Instrument zur individuellen Förderung im Chemieunterricht, Zeitschrift für Didaktik der Naturwissenschaften, 23(1), S. 143-163. Nov. 2017.
 
[17]  Höffler, T. N., Leutner, D. Instructional animation versus static pictures: A meta-analysis, Learning and Instruction, 17(6), 722-738. Dec. 2017.
 
[18]  Website of the Department of Chemistry Education, University of Wuppertal: https://chemiedidaktik.uni-wuppertal.de/index.php?id=4189&L=1 [Accessed, Jul. 18, 2019].
 
[19]  Bohrmann-Linde, C. Solarzelle und LED. Zwei Beispiele für Multimedia-gestützte Lerneinheiten, Naturwissenschaften im Unterricht. Chemie, 16 (90), 31-34. Nov. 2005.
 
[20]  Lowe, R., Ploetzner, R (Ed.). Learning from Dynamic Visualization. Innovations in Research and Application, Springer, Cham, 2017.
 
[21]  Nehring, A., Busch, S. Chemistry Demonstrations and Visual Attention: Does the Setup Matter? Evidence from a Double-Blinded Eye-Tracking Study. Journal of Chemical Education, 95(10), 1724-1735. Oct. 2018.
 
[22]  Eckard, J., Rodemer, M., Bernholt, S., Graulich, N. (2019). Blickbewegungen beim Umgang mit organischen Reaktionsmechanismen. In: Naturwissenschaftliche Bildung als Grundlage für berufliche und gesellschaftliche Teilhabe. Gesellschaft für Didaktik der Chemie und Physik. Jahrestagung in Kiel, Regensburg, 2018, 87-810.
 
[23]  Kläger, S. Chemie lernen mit Animationen. Eye-Tracking gestützte Untersuchung des Umgangs mit einer Animation zum photogalvanischen Element, Scientific work for the first state examination for high school teaching profession in chemistry, Eberhard-Karls-University Tübingen 2018.
 
[24]  Petko, D. Einführung in die Mediendidaktik. Lehren und Lernen mit digitalen Medien, Beltz, Weinheim, 2014.
 
[25]  Wagner, I., Schnotz, W., Learning from Static and Dynamic Visualizations: What Kind of Questions Should We Ask?, in: Lowe, R., Ploetzner, R (Ed.). Learning from Dynamic Visualization. Innovations in Research and Application, Springer, Cham, 2017, 69-91.
 
[26]  Zeller, D., Bohrmann-Linde, C. Sommer, Sonne, Titandioxid, Nachrichten aus der Chemie 67, 16-19. Jul. 2019.