World Journal of Chemical Education. 2020, 8(1), 52-60
DOI: 10.12691/WJCE-8-1-7
Special Issue

Using Video Documentation in Out-Of-School Lab Days as an ICT Learning and Diagnostic Tool

Katharina Gross1, and Felix Pawlak2

1University of Vienna, Institute of Chemistry Education, Vienna, Austria

2University of Cologne, Institute of Chemistry Education, Cologne, Germany

Pub. Date: March 05, 2020
(This article belongs to the Special Issue Transformation of Science Education with ICT)

Cite this paper

Katharina Gross and Felix Pawlak. Using Video Documentation in Out-Of-School Lab Days as an ICT Learning and Diagnostic Tool. World Journal of Chemical Education. 2020; 8(1):52-60. doi: 10.12691/WJCE-8-1-7

Abstract

The use of ICT in science education offers many opportunities to promote students’ learning and experimenting comprehensively. Considering that, it is important not simply to replace traditional media, but to explicitly identify the added value of ICT tools for students and teachers. Especially alternative forms of documenting experiments, particularly video documentation, provide both the possibility to diagnose students’ individual learning conditions, abilities and difficulties as well as the opportunity to cope with students’ cognitive and epistemological conceptions adequately. Apart from the school context, extracurricular activities (informal learning-settings, like out-of-school lab-days) can be used to explore the potential of video documentations. The following paper presents the use of video documentation as an ICT learning and diagnostic tool in the out-of-school lab “ELKE”. Based on a qualitative examination, the video documentations give insight into students’ professional and formal strengths and weaknesses - an added value that a traditional experiment protocol is not able to provide in this way.

Keywords

ICT, video documentation of experiments, out-of-school lab days, diagnostic tool

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Itzek-Greulich, H., Flunger, B., Vollmer, C., Nagengast, B., Rehm, M., & Trautwein, U. “Effectiveness of lab-work learning environments in and out of school: A cluster randomized study”, Contemporary Educational Psychology, 48, 98-115, 2017.
 
[2]  Bell, R., Blair, M., Crawford, B., & Lederman, N., “Just do it? Impact of a science apprenticeship program on high school students’ understandings of the nature of science and scientific inquiry”, Journal of Research in Science Teaching, 40, 487-509, 2003.
 
[3]  Gibson, H., & Chase, C., “Longitudinal impact of an inquiry-based science program on middle school students’ attitudes toward science”, Science Education, 86, 693-705, 2002.
 
[4]  Markowitz. D. G., “Evaluation of the long-term impact of a university high school summer science program an students` interest and perceived abilities in science”, Journal of Science Education and Technology, 13(3), 395-407, 2004.
 
[5]  Tierney, J., Bodek, M., Fredricks, S., Dudkin, E., & Kistler, K., “Using Web-Based Video as an Assessment Tool for Student Performance in Organic Chemistry”, Journal of Chemical Education, 91(7), 982-986, 2014.
 
[6]  Benedict, L., & Pence, H. E., “Teaching Chemistry Using Student-Created Videos and Photo Blogs Accessed with Smartphones and Two-Dimensional Barcodes”, Journal of Chemical Education, 89(4), 492-496, 2012.
 
[7]  Jordan, J. T., Box, M. C., Eguren, K. E., Parker, T. A., Saraldi-Gallardo, V. M., Wolfe, M. I., & Gallardo-Williams, M.T., “Effectiveness of Student-Generated Video as a Teaching Tool for an Instrumental Technique in the Organic Chemistry Laboratory”, Journal of Chemical Education, 93(1), 141-145, 2016.
 
[8]  Seibert, J., Kay, C. W. M., & Huwer, J., “EXPlainistry: Creating Documentation, Explanations, and Animated Visualizations of Chemistry Experiments Supported by Information and Communication Technology To Help School Students Understand Molecular-Level Interactions”, Journal of Chemical Education, 96(11), 2503-2509, 2019.
 
[9]  Groß, K. & Reiners, Ch.S., “Alternative Documentations of Experiments - A Differentiation and Diagnosis Tool in Chemistry Lessons?”. CnS - La Chimicia nella Scuola, XXXIV (3), 141-144, 2012.
 
[10]  Groß, K., & Reiners, C. S., “Experimente alternativ dokumentieren”. CHEMKON, 19(1), 13-20, 2012.
 
[11]  Haupt, O. J., Domjahn, J., Martin, U., Skiebe-Corrette, P., Vorst, S., Zehren, W., & Hempelmann, R., „Schülerlabore. Eine Begriffsschärfung und Kategorisierung,“ MNU-Journal, 66(6), 324-330, 2013.
 
[12]  Groß, K., Schumacher, A., „ELKE - Eine Möglichkeit der systematischen Vernetzung eines außerschulischen Lernortes mit dem Chemieunterricht,“ MNU-Journal, 71 (6), 414-420, 2018.
 
[13]  Bader, H. J., & Lühken, A., “Experimente,” in K. Sommer, J. Wambach-Laicher, & P. Pfeifer (Eds.), Konkrete Fachdidaktik Chemie: Grundlagen für das Lernen und Lehren im Chemieunterricht, Friedrich, Aulis, Seelze, 490, 2018.
 
[14]  Liao, Y.-K. C., & Lai, W.-C., “Meta-analyses of Large-Scale Datasets: A Tool for Assessing the Impact of Information and Communication Technology in Education,” in J. Voogt, G. Knezek, R. Christensen, & K.-W. Lai (Eds.), Second Handbook of Information Technology in Primary and Secondary Education, 1126-1142, 2018.
 
[15]  Voogt, J., Knezek, G., Christensen, R., & Lai, K.-W., “Developing an Understanding of the Impact of Digital Technologies on Teaching and Learning in an Ever-Changing Landscape,” in J. Voogt, G. Knezek, R. Christensen, & K.-W. Lai (Eds.), Second Handbook of Information Technology in Primary and Secondary Education, 3-12, 2018.
 
[16]  Dori, Y. J., Rodrigues, S., & Schanze, S., “How to Promote Chemistry Learning Through the use of ICT,” in I. Eilks & A. Hofstein (Eds.), Teaching Chemistry - A Studybook, 214, 2013.
 
[17]  Feierabend, S., Plankenhorn, T., & Rathgeb, T., JIM 2017. Jugend, Information, (Multi-) Media. Basisstudie zum Medienumgang 12-bis 19-Jähriger in Deutschland, 2013, [Online]. Available: https://www.mpfs.de/fileadmin/files/Studien/JIM/2017/JIM_2017.pdf [Accessed Mai 14, 2019].
 
[18]  Koc, M., “Let’s make a movie: Investigating pre-service teachers’ reflections on using video-recorded role playing cases in Turkey,” Teaching and Teacher Education, 27(1), 95-106, 2011.
 
[19]  Kalyuga, S., “Effects of Learner Prior Knowledge and Working Memory Limitations on Multimedia Learning”, Procedia - Social and Behavioral Sciences, 83, 25-29, 2013.
 
[20]  Hattie, J., Visible learning: A synthesis of over 800 meta-analyses relating to achievement, Routledge, London, New York, 2009.
 
[21]  Koehler, M. J., & Mishra, P., “What is technological pedagogical content knowledge?” Contemporary Issues in Technology and Teacher Education, 9(1), 60-70, 2009.
 
[22]  Baumann, T., Kieserling, M., Struckholt, S., & Melle, I., „Verbrennungen. Eine Unterrichtseinheit für inklusiven Unterricht,“ CHEMKON, 25(4), 160-170, 2018.
 
[23]  Pawlak, F., & Groß, K., „Classroom-Management im inklusiven Chemieunterricht,“ in C. Maurer (Ed.), Naturwissenschaftliche Bildung als Grundlage für berufliche und gesellschaftliche Teilhabe. Gesellschaft für Didaktik der Chemie und Physik Jahrestagung in Kiel 2018. Universität Regensburg, 125-128, 2019.