World Journal of Chemical Education. 2020, 8(2), 71-86
DOI: 10.12691/WJCE-8-2-3
Original Research

Spectroelectrochemistry of Electrochromic and Electroluminescent Substances with Screen-Printed Electrodes and with an Optically Transparent Platinum Mesh Electrode

Achim Habekost1,

1Department of Chemistry, University of Education Ludwigsburg, Reuteallee 46, D-71634 Ludwigsburg, Germany

Pub. Date: April 01, 2020

Cite this paper

Achim Habekost. Spectroelectrochemistry of Electrochromic and Electroluminescent Substances with Screen-Printed Electrodes and with an Optically Transparent Platinum Mesh Electrode. World Journal of Chemical Education. 2020; 8(2):71-86. doi: 10.12691/WJCE-8-2-3

Abstract

Spectroelectrochemistry of Electrochromic and electroluminescent substances shows a strong correlation between electrochemical reactions on electrodes and changes in absorbance or luminescence adjacent to the electrode. This was demonstrated by the well-known substances methylviologen and tris (2,2’-bipyridyl) dichloro-ruthenium [Ru (bpy)3]2+. The experimental setup used a conventional potent iostat connected to a fiber spectrometer. Different commercial spectroelectrochemical cells were used: A thin-film absorption cell with a platinum mesh working electrode and as pecular reflection/transmission cell with different screen-printed electrodes. For luminescence measurements, a conventional quartz cuvette with the platinum mesh electrode was used. All cells were inserted into commercial cell holders with connectors for optical fibers. Spectroelectrochemistry becomes increasingly important as an analytical method. In addition, the empirically observed didactical problems of misunderstanding electrochemical electrode reactions can be overcome by visualizing the electrode processes in spectroelectrochemical measurements. The procedures followed in these experiments were designed for typical undergraduate students in electrochemistry.

Keywords

second-year under graduate, laboratory instruction, physical chemistry, hands-on learning/ manipulatives, electrochemistry, spectroscopy

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Heineman, W. R. Spectroelectrochemistry. J. Chem. Educ. 1983, 60, (4). 305-308.
 
[2]  Monk, P. M. S, The Viologens, Wiley, Chichester, 1998.
 
[3]  Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, 2007.
 
[4]  Granquist, C. G.; Pehlivan, I. B.; Green, S. V.; Lansaker, P. C.; Niklasson, G. A, Oxide-based Electrochromism: Advances in materials and devices, Mater. Res. Soc. Symp. Proc. 2011, 1328, 11-22.
 
[5]  Pang, Y.; Chen, Q.; Shen, X.; Tang, L.; Qian, H, Size-controlled Ag nanoparticle modified WO3 composite films for adjustment of electrochromic properties, Thin Solid Films, 2010, 518, 1920-1924.
 
[6]  Galiote, N. A.; Parreira, R. L. T.; Rosolen, J. M.; Huguenin, F.Self-assembled films from WO3: Electrochromism and lithium ion diffusion, Electrochem. Commun., 2010, 12, 733-736.
 
[7]  Hepel, M. Electrochromic WO3 Films: Nanotechnology Experiments in Instrumental Analysis and Physical Chemistry Laboratories, J. Chem. Educ., 2008, 85, 125-127.
 
[8]  Duek, E. A. R.; De Paoli, M. A. Mastragostino, M, An electrochromic device based on polyaniline and Prussian blue, Adv. Mater., 1992,4, 287-291.
 
[9]  Jelle, B. P.; Hagen, G.Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide, J. Electrochem. Soc., 1993, 140, 3560-3564.
 
[10]  Barbero, C.; Miras, M. C.; Koetz, R.; Haas, O.Comparative study of the ion exchange and electrochemical properties of sulfonated polyaniline (SPAN) and polyaniline (PANI), Synth. Met., 1993, 55, 1539-1544.
 
[11]  Ram, M. K.; Maccioni, E.; Nicolini, C.The electrochromic response of polyaniline and its copolymeric systems, Thin Solid Films, 1997, 303, 27-33.
 
[12]  Beden, B.; Enea, O.; Hahn, F.; Lamy, C. Investigations of the absorption of Methyl Viologen on a platinum electrode by voltammetry coupled with “in situ” UV-visible reflectance spectroscopy, J. Electroanal. Chem., 1984, 170, 357-361.
 
[13]  Bird, C. L.; Kuhn, A. T. Electrochemistry of the Viologens, Chem. Soc. Rev., 1981, 10, 49-82.
 
[14]  Barclay, D. J.; Bird, C. L.; Martin, D. H. Speed considerations for electrochromic displays, J. Electron. Mater.1979, 8, 311-315.
 
[15]  Ruff, A.; Speiser, B.; Dreiling, J. Redox-active silica nanoparticles. Part 7. Redox behavior of core/shell structured viologen modified silica particles immobilized at paraffin impregnated graphite electrodes, J. Electroanal. Chem., 2013, 710, 10-16.
 
[16]  Passon, M.; Ruff, A.; Schuler, P.; Speiser B.; Dreiling, J. Redox-active Silica Nanoparticles. Part 8. Stepwise solid-phase synthesis and solid state electrochemistry of redox active viologen core/shell structured modified silica materials, Chem Electro Chem, 2014, 1, 263-280.
 
[17]  Saricayir, H.; Uce, M.; Koca, A. In Situ Techniques for Monitoring Electrochromism, J. Chem. Educ.2010, 87, 205-207.
 
[18]  Monk, P. M. S.; Turner, C.; Akhtar, S. P. Electrochemical behavior of methyl viologen in a matrix of paper, Electrochim. Acta, 1999, 44, 4817-4826.
 
[19]  Rueda, M.; Compton, R. G.; Alden, J. A. Prieto, F. Impedance voltammetry of electro-dimerization mechanisms: Application to the reduction of the methyl viologen di-cation at mercury electrodes and aqueous solutions, Electroanal. Chem. 1998, 443, 227-235.
 
[20]  Gerardi, R.D.; Barnett, N.W.; Lewis, S.W. Analytical applications of tris (2,2'-bipyridyl) ruthenium(III) as a chemiluminescent reagent. Analyt.Chim.Acta,1999, 378, 1-43.
 
[21]  Martin-Yerga, D.; Perez-Junquera, A.; Hernandez-Santos, D.; Fanjul-Bolado, P. Electroluminescence of [Ru(bpy)3]2+ at gold and silver screen-printed electrodes followed by real-time spectroelectrochemistry, Phys. Chem. Chem. Phys. 2017, 19, 22633-22637.
 
[22]  Costin, J. W.; Barnett, N. W.; Lewis, S. W. Determination of proline in wine using flow injection analysis with tris (2, 2’-bipyridyl) ruthenium (II) chemiluminescence detection, Talanta 2004, 64, 894-898.
 
[23]  Habekost, A. Investigations of Some Reliable Electrochemi luminescence Systems on the Basis of tris (bipyridyl) Ruthenium (II) for HPLC Analysis. World J. Chem. Educ. 2016, 4, 13-20.
 
[24]  Forslund, B. A. Simple Laboratory Demonstration of Electrochromism, J. Chem. Educ.,1997, 74, 962 - 963.
 
[25]  Abdinejad, T.; Zamanloo, M.R.; Alizadeh, T.; Mahmoodi, N. O.; Pouran S. R. Photochromic and Electrochromic Diimide Synthesized Simply from Inexpensive Compounds: A Multidisciplinary Experiment for Undergraduate Students. J. Chem. Educ. 2018,95 (9), 1642-1647.
 
[26]  Jorge G. Ibanez, J. G.; Puente-Caballero, R.; Torres-Perez, J.,; Bustos, D.; Carmona-Orbezo, A.; Sevilla, F.B. An Inexpensive Device for Studying Electrochromism. J. Chem. Educ. 2012,89 (9), 1205-1207.
 
[27]  Schmidt, H-J.; Marohn A.; Harrison, A.G. Factors that prevent learning in Electrochemistry, J. Res. in Sci. Teaching, 2007, 44, 258-283.
 
[28]  Garnet P.J.; Treagust, D.F. Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (galvanic) and electrolysis cells, J. Res. in Sci. Teach. 1992, 29, 1079-1099.
 
[29]  Ogude, N.A.; Bradley, J.D. Electrode processes and aspects relating to cell EMF, current, and cell components in operating electrochemical cells. J. Chem. Educ. 1996, 73, 1145-1149.
 
[30]  Huddle, A.H.; White, M.D.; Rodgers, F. Using a teaching model to correct known misconceptions in electrochemistry. J. Chem. Educ. 2000, 77, 104-110.
 
[31]  Acar, B.; Tarhan, L. Effect of cooperative learning strategies on students’ understanding of concepts in electrochemistry. Int. J. Sci. and Math. Educ. 2007, 5, 349-373.
 
[32]  Bard, A. J. (Ed.) Electrogenerated Chemi luminescence. Marcel Dekker, New York, 2004.
 
[33]  Richter, M.M. Electrochemi luminescence (ECL). Chem. Rev. 2004, 104, 3003-3036.
 
[34]  Parveen, S.; Aslam, M.S.; Hu, L.; Xu, G. Electrogenerated Chemi luminescence. Protocols and Applications. Springer, Heidelberg, Germany, 2013.
 
[35]  Fähnrich, K.A.; Pravda, M.; Guilbault, G.G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta2001, 54, 531-559.
 
[36]  Aristov, N; Habekost, A. Cyclic Voltammetry - A Versatile Electrochemical Method Investigating Electron Transfer Processes. World J. Chem. Educ. 2015, 3, 5 115-119.
 
[37]  Viswanathan, B.; Scibioh, M.A. Photoelectrochemistry. Principles and Practices, Alpha Science, Oxford, 2014.
 
[38]  Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, Wiley and Sons, New York, 2001.
 
[39]  Gosser, Jr, D. K. Cyclic Voltammetry. Simulation and Analysis of Reaction Mechanism, VCH, Weinheim, Germany, 1993.
 
[40]  Compton, R. G.; Banks, C. E. Understanding Voltammetry, 2nd Edition, Imperial College Press, 2011.
 
[41]  Mabbott, G. A. An Introduction to Cyclic Voltammetry, J. Chem. Educ. 1983, 60, 607-702.
 
[42]  Kissinger, P. T.; Heineman, W. R. Cyclic Voltammetry, J. Chem. Educ. 1983, 60, 702-706.
 
[43]  van Benschoten, J. J.; Lewis, Y. T.; Heineman, W. R.; Roston, D. A.; Kissinger, P. T. Cyclic Voltammetry Experiments, J. Chem. Educ. 1983, 60, 772-776.
 
[44]  Amend, J.R.; Steward, G.; Kunzleman, T.S.; Collins, M.J. Affordable cyclic voltammetry, J. Chem. Educ. 2009, 86 (9), 1080-1081.
 
[45]  Taleat Z.; Khoshroo, A.; Mazloum-Ardakani M. Screen-printed electrodes for biosensing: A review (2008-2013) MicrochimicaActa,2014,181, 865-891.
 
[46]  Alberich, A.; Serrano, N.; Diaz-Cruz, J.M.; Arino, C.; Esteban, M. Substitution of mercury electrodes by bismuth-coated screen-printed electrodes in the determination of quinone in tonic water, J. Chem. Educ. 2013, 90, 1681-1684.
 
[47]  DeAngelis, T. P.; Heineman, W. R. An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode, J. Chem. Educ. 1976, 53, 594 - 597.
 
[48]  Hernandez, C. N.; Martin-Yerga, D.; Gonzalez-Garcia, M. B.; Hernandez-Santos, D.; Fanjul-Bolado, P. Evaluation of electrochemical, UV/VIS and Raman spectroelectrochemical detection of Naratripan with screen-printed electrodes, Talanta2018, 178, 85-88.
 
[49]  Hernandez, C. N.; Gonzalez-Garcia, M. B.; Hernandez-Santos, D.; Heras, M. A.; Colina, A.; Fanjul-Bolado, P. Aqueous UV-VIS spectroelectrochemical study of the voltammetric reduction of graphene oxide on screen-printed carbon electrodes, Electro. Comm. 2016,64, 85-88.
 
[50]  Kalyanasundaram, K. Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium (II) and its analogues, Coord. Chem. Rev.1982,46, 159-244.