World Journal of Chemical Education. 2020, 8(2), 92-99
DOI: 10.12691/WJCE-8-2-5
Original Research

Experiments to Introduce Students into the Temperature Dependence of the Reaction Rate

Marcel Emmert1, Konrad Heß1, Patrick Gräb1, and Ekkehard Geidel1

1Didactics of Chemistry, Julius-Maximilians-University Würzburg, 97074 Würzburg, Germany

Pub. Date: April 25, 2020

Cite this paper

Marcel Emmert, Konrad Heß, Patrick Gräb and Ekkehard Geidel. Experiments to Introduce Students into the Temperature Dependence of the Reaction Rate. World Journal of Chemical Education. 2020; 8(2):92-99. doi: 10.12691/WJCE-8-2-5

Abstract

It is a challenge in chemical education to understand basic principles of chemical reaction kinetics on an experimental basis because of the relatively extensive experimental setup and the often time-consuming measurement series. This contribution offers an introduction into the field of the temperature dependence of reaction rate with easy-to-use experiments. Data logging systems have been used to get sufficient data-sets to evaluate different measurements in reaction kinetics. Several experiments were designed for practical courses in chemistry, which allow students to derive the simple van‘t Hoff rule on the one hand. On the other hand, the Arrhenius equation can only be derived on the basis of experimental data with the help of information from collision theory and Maxwell-Boltzmann distribution.

Keywords

temperature dependence of reaction rate, van‘t Hoff rule, Arrhenius equation, low-cost photometer

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Habekost, A., Einführung in die Reaktionskinetik: Theorie und Praxis, Hildesheim, Franzbecker, 2010.
 
[2]  Seoud, O. A. E., Baader, W. J., and Bastos, E. L., “Practical Chemical Kinetics in Solution,” in Encyclopedia of Physical Organic Chemistry, American Cancer Society, 2016, 1-68.
 
[3]  Jansen, W. and Matuschek-Wilken, C., “Das historisch problemorientierte Unterrichtsverfahren - Geschichte der Chemie im Chemieunterricht,” in Konkrete Fachdidaktik Chemie, 3rd ed., , P. Pfeifer, B. Lutz, and Bader, Hans Joachim, Eds. München, Oldenbourg, 2002.
 
[4]  Arrhenius, S., “Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren,” Zeitschrift für Physikalische Chemie, 4U(1), 226-248, 1889.
 
[5]  Harel, I. and Papert, S., Constructionism, Norwood, Ablex Publishing, 1991.
 
[6]  Ruda, P. T., “A Versatile kinetics demonstration,” Journal of Chemical Education, 55(10), 652, Oct. 1978.
 
[7]  Wiechoczek, D. and Blume, R., “Die durch Cobalt katalysierte Oxidation von Weinsäure,” 04-Jan-2005. [Online]. Available: http://www.chemieunterricht.de/dc2/katalyse/vkat-008.htm. [Accessed: 18-Dec-2019].
 
[8]  LD Didactic, “Katalytische Oxidation von Weinsäure mit Wasserstoffperoxid.” [Online]. Available: https://www.ld-didactic.de/documents/de-DE/EXP/C/C4/C4111_d.pdf. [Accessed: 18-Dec-2019].
 
[9]  Wright, S. W. and Silverstein, T. P., “Improvements upon the ‘Colorful Cobalt Catalysis’ Demonstration and Evidence for the Presence of an Autocatalytic Mechanism,” Journal of Chemical Education, 87(10), 1064-1069, Oct. 2010.
 
[10]  Briggs, T. S. and Rauscher, W. C., “An oscillating iodine clock,” Journal of Chemical Education, 50(7), 496, Jul. 1973.
 
[11]  Brice, L. K., “Rossini, William Tell and the iodine clock reaction: A lecture demonstration,” Journal of Chemical Education, 57(2), 152, Feb. 1980.
 
[12]  Creary, X. and Morris, K. M., “A New Twist on the Iodine Clock Reaction: Determining the Order of a Reaction,” Journal of Chemical Education, 76(4), 530, Apr. 1999.
 
[13]  Kreißl, F. R. and Krätz, O., Feuer und Flamme, Schall und Rauch, Weinheim, Wiley-VCH, 1999.
 
[14]  Felix, L. D., “Kinetic Study of the Discoloration of Crystal Violet Dye in Sodium Hydroxide Medium,” Journal of Chemistry and Applied Chemical Engineering, 2018, May 2018.
 
[15]  Kappenberg, F., “Reaktion von Kristallviolett mit Natronlauge,” Jun-2009. [Online]. Available: http://www.kappenberg.com/experiments/foto/pdf/i07.pdf.
 
[16]  Kazmierczak, N. and Vander Griend, D. A., “Improving Student Results in the Crystal Violet Chemical Kinetics Experiment,” Journal of Chemical Education, 94(1), 61-66, Jan. 2017.
 
[17]  Ralle, B. et al., Handbuch der experimentellen Chemie. Sekundarbereich II / Kinetik, Katalyse, Gleichgewicht, Köln, Aulis Verlag, 2004.
 
[18]  Gräb, P. and Geidel, E., “Spectroscopic Studies of Food Colorings,” World Journal of Chemical Education, 7(2), 136-144, Apr. 2019.
 
[19]  Nadupalli, S., Dasireddy, V., Koorbanally, N., and Jonnalagadda, S., “Kinetics and Mechanism of the Oxidation of Coomassie Brilliant Blue-R Dye by Hypochlorite and Role of Acid Therein,” South African Journal of Chemistry, 68, 85-92, 2015.
 
[20]  Steiner, D. and Lehnerer, M., “Reaktionsgeschwindigkeiten mit einer Waage aufgezeichnet,” Naturwissenschaften im Unterricht Chemie, 11, 34-36, 1992.
 
[21]  Baedecker, P. A. and Reddy, M. M., “The Erosion of Carbonate Stone by Acid Rain: Laboratory and Field Investigations,” Journal of Chemical Education, 70(2), 104, Feb. 1993.
 
[22]  Alkattan, M., Oelkers, E. H., Dandurand, J.-L., and Schott, J., “An experimental study of calcite and limestone dissolution rates as a function of pH from -1 to 3 and temperature from 25 to 80°C,” Chemical Geology, 151(1-4), 199-214, Oct. 1998.
 
[23]  International GeoGebra Institute, “GeoGebra.” [Online]. Available: https://www.geogebra.org/. [Accessed: 13-Feb-2020].