World Journal of Chemical Education. 2020, 8(4), 150-154
DOI: 10.12691/WJCE-8-4-2
Original Research

Electrochemical Synthesis of Amorphous Nickel Sulfide Nanostructured Film Photocathode for Solar Hydrogen Production

Mohammed Alghazal1 and Ahsanulhaq Qurashi1, 2,

1Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

2Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia;Department of Chemistry, Khalifa University, Abu Dhabi 127788, United Arab Emirates

Pub. Date: September 07, 2020

Cite this paper

Mohammed Alghazal and Ahsanulhaq Qurashi. Electrochemical Synthesis of Amorphous Nickel Sulfide Nanostructured Film Photocathode for Solar Hydrogen Production. World Journal of Chemical Education. 2020; 8(4):150-154. doi: 10.12691/WJCE-8-4-2

Abstract

Electrochemical synthesis of amorphous nanostructured films is now well recognized method and here we present experimental protocol for the synthesis of Nickel Sulphide (NiS) amorphous nanostructured film for solar hydrogen production from water feedstock which was used in teaching laboratory in last year of undergraduate and post graduate chemistry students. This proves fascinating laboratory experience that is adopted through modern renewable energy technologies to produce hydrogen from water feedstock. This research area is now well established and expected to be utilized for graduate and undergraduate teaching for advance learning of clean energy processes.

Keywords

undergraduates, graduates, physical chemistry, materials chemistry, nanotechnology

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Levi, P.G., Cullen, J.M.: Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products. Environ. Sci. Technol. 52, 1725-1734 (2018).
 
[2]  Sining Yun, Nick Vlachopoulos, Ahsanulhaq Qurashi, Shahzada Ahmad, Anders Hagfeldt “Dye sensitized photoelectrolysis cells” Chem. Soc. Rev., 48 (2019) 3705-3722.
 
[3]  Graves, C., Ebbesen, S.D., Mogensen, M., Lackner, K.S.: Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sustain. Energy Rev. 15, 1-23 (2011).
 
[4]  Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., Chen, X.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A. 3, 2485-2534 (2015).
 
[5]  Fujishima, A., Honda, K.: Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 238, 37-38 (1972).
 
[6]  Jafari, T., Moharreri, E., Amin, A., Miao, R., Song, W., Suib, S.: Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules. 21, 900 (2016).
 
[7]  Serpone, N., Emeline, A. V, Horikoshi, S.: Photocatalysis and solar energy conversion (chemical aspects). Photochem. Vol. 37. (2009).
 
[8]  Cao, S., Yu, J.: Carbon-based H2-production photocatalytic materials. J. Photochem. Photobiol. C Photochem. Rev. 27, 72-99 (2016).
 
[9]  Morosini, V., Chave, T., Virot, M., Moisy, P., Nikitenko, S.I.: Sonochemical water splitting in the presence of powdered metal oxides. Ultrason. Sonochem. 29, 512-516. (2016).
 
[10]  Hung, W., Chien, T., Tseng, C.: Enhanced Photocatalytic Water Splitting by Plasmonic TiO 2 –Fe 2 O 3 Cocatalyst under Visible Light Irradiation. J. Phys. Chem. C. 118, 12676-12681 (2014).
 
[11]  Jiang, N., Tang, Q., Sheng, M., You, B., Jiang, D., & Sun, Y. (2015). Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles Catalysis Science & Technology, 6(4), 1077-1084.
 
[12]  Wei, L., Chen, Y., Zhao, J., & Li, Z. (2013). Preparation of NiS/ZnIn2S4as a superior photocatalyst for hydrogen evolution under visible light irradiation. Beilstein Journal of Nanotechnology, 4, 949-955.
 
[13]  Li, C., Wang, H., Naghadeh, S. B., Zhang, J. Z., & Fang, P. (2018). Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures. Applied Catalysis B: Environmental, 227, 229-239.
 
[14]  Li, N., Zhou, B., Guo, P., Zhou, J., & Jing, D. (2013). Fabrication of noble-metal-free Cd0.5Zn0.5S/NiS hybrid photocatalyst for efficient solar hydrogen evolution. International Journal of Hydrogen Energy, 38(26), 11268-11277.
 
[15]  Liu, Q., He, J., Yao, T., Sun, Z., Cheng, W., He, S., Xie, Y., Peng, Y., Cheng, H., Sun, Y., Jiang, Y., Hu, F., Xie, Z., Yan, W., Pan, Z., Wu, Z., Wei, S.: Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat. Commun. 5, 5122 (2014).
 
[16]  Sivula, K., Zboril, R., Le Formal, F., Robert, R., Weidenkaff, A., Tucek, J., Frydrych, J., Grätzel, M.: Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. J. Am. Chem. Soc. 132, 7436-7444 (2010).
 
[17]  Sivula, K., Le Formal, F., Grätzel, M., Le Formal, F., Grätzel, M.: Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem. 4, 432-449 (2011).
 
[18]  Chen, S., Zeng, Q., Bai, J., Li, J., Li, L., Xia, L., Zhou, B.: Preparation of hematite with an ultrathin iron titanate layer via an in situ reaction and its stable, long-lived, and excellent photoelectrochemical performance. Appl. Catal. B Environ. 218, 690-699 (2017).
 
[19]  Kim, T.W., Choi, K.-S.: Improving Stability and Photoelectrochemical Performance of BiVO 4 Photoanodes in Basic Media by Adding a ZnFe 2 O 4 Layer. J. Phys. Chem. Lett. 7, 447-451 (2016).
 
[20]  Annamalai, A., Shinde, P.S., Jeon, T.H., Lee, H.H., Kim, H.G., Choi, W., Jang, J.S.: No Title. Sol. Energy Mater. Sol. Cells. 144, 247-255 (2016).
 
[21]  Lin, L., Ou, H., Zhang, Y., Wang, X.: Tri- s -triazine-Based Crystalline Graphitic Carbon Nitrides for Highly Efficient Hydrogen Evolution Photocatalysis. ACS Catal. 6, 3921-16.
 
[22]  Ahsanulhaq et al. Template-less surfactant-free hydrothermal synthesis NiO nanoflowers and their photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 40, 45, (2015) 15801-15805.