World Journal of Chemical Education. 2021, 9(1), 28-41
DOI: 10.12691/WJCE-9-1-5
Original Research

Adsorptive Accumulation of Methylene Blue Dye from Aqueous Effluent by NiFe2O4-GO Nano-adsorbent

Taznur Ahmed1 and Susmita Sen Gupta2,

1Department of chemistry, Science College Kokrajhar, Assam, India

2Department of chemistry, B N College Dhubri, Assam, India

Pub. Date: March 26, 2021

Cite this paper

Taznur Ahmed and Susmita Sen Gupta. Adsorptive Accumulation of Methylene Blue Dye from Aqueous Effluent by NiFe2O4-GO Nano-adsorbent. World Journal of Chemical Education. 2021; 9(1):28-41. doi: 10.12691/WJCE-9-1-5

Abstract

In this article, the Methylene Blue dye adsorption is studied using NiFe2O4-Graphene Oxide composite as adsorbent. The NiFe2O4-graphene oxide (NiFe2O4-GO) nano-composite made by single step solvothermal approach. The characterization study revealed the abundance of functional group and nanomaterial features in prepared material. The MB adsorption is increased with rising adsorbent doses, pH, temperature and initial MB solution concentrations. Pseudo second order kinetic model got fitted by adsorption kinetics. As compared to BET, Temkin, Freundlich and Dubinin-Radushkevich model, Langmuir model is suitable for adsorption isotherm. Thermodynamic studies suggest adsorption process’s endothermic nature and spontaneity. The adsorption advances through π-π interaction, H-bonding and electrostatic attraction. Reusability study reveals the prepared adsorbent is a promising as well as cost effective sorbent for high efficiency and excellent renewability.

Keywords

Adsorption, NiFe2O4-GO composite, Methylene Blue, kinetics, isotherms

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Lewis R.M., Andre-Schwartz J., Gs H., Ms H., 142 LCTA IN STUDY POPULATIONS. vol. 21. 1978.
 
[2]  Albert M., Lessin M.S. and Gilchrist B.F., “Methylene blue: Dangerous dye for neonates”, J Pediatr Surg, 38. 1244-1245. 2003.
 
[3]  Majithia A. and Stearns MP, “Methylene blue toxicity following infusion to localize parathyroid adenoma”, J Laryngol Otol, 120. 138-140. 2006.
 
[4]  Oz M., Lorke D.E. and Petroianu G.A., “Methylene blue and Alzheimer’s disease”, Biochem Pharmacol, 78. 927-932. 2009.
 
[5]  Wang W., Cai K., Wu X., Shao X. and Yang X., “A novel poly(m-phenylenediamine)/reduced graphene oxide/nickel ferrite magnetic adsorbent with excellent removal ability of dyes and Cr(VI)”, J Alloys Compd, 722. 532-43. 2017.
 
[6]  Xiong W., Zeng G., Yang Z., Zhou Y., Zhang C., Cheng M., Liu Y., Hu L., Wan j., Zhou C., Xu R., and Li X., “Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent”, Sci Total Environ, 627. 235-244. 2018.
 
[7]  Zhou C., Xu P., Lai C., Zhang C., Zeng G., Huang D., Cheng M., Hu L., Xiong W., Wen X., qin L., Yuan J., and Wang W., “Rational design of graphic carbon nitride copolymers by molecular doping for visible-light-driven degradation of aqueous sulfamethazine and hydrogen evolution” Chem Eng J, 359. 186-196. 2019.
 
[8]  Al-Hamadani Y.A. J., Lee G., Kim S., Park C.M., Jang M., Her N., Han J., and Yoon Y., “Sonocatalytic degradation of carbamazepine and diclofenac in the presence of graphene oxides in aqueous solution”, Chemosphere, 205. 719-727. 2018.
 
[9]  Goodwin D.G., Adeleye A.S, Sung L., Ho K.T., Burgess R.M. and Petersen E.J., “Detection and Quantification of Graphene-Family Nanomaterials in the Environment”, Environ Sci Technol, 52. 4491-4513. 2018.
 
[10]  Deng X., Lü L., Li H. and Luo F., “The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method” J Hazard Mater, 183. 923-930. 2010.
 
[11]  Bao N., Shen L., Wang Y., Padhan P., and Gupta A., “A facile thermolysis route to monodisperse ferrite nanocrystals”, J Am Chem Soc, 129. 12374-12375. 2007.
 
[12]  Hummers W.S. and Offeman R.E., “Preparation of Graphitic Oxide” J Am Chem Soc, 80. 1339. 1958.
 
[13]  Ahmed T., Ali A.M. and Gupta S.S., “Application of NFO-GO composite for the removal of acid blue 25 toxic dye from aqueous solution”, Desalin Water Treat, 174. 400-413. 2020.
 
[14]  Cullity B.D. and Stock S.R. Elements of X-RAY DIFFRACTION, Plant Management & Physiology, Second Edition. 1978.
 
[15]  Sivakumar P., Ramesh R., Ramanand A., Ponnusamy S. and Muthamizhchelvan C., “Synthesis and characterization of NiFe2O4 nanoparticles and nanorods”, J Alloys Compd. 563. 6-11. 2013.
 
[16]  Ferrari A.C., Meyer J.C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K.S., Roth S. and Geim A.K., “Raman spectrum of graphene and graphene layers”, Phys Rev Lett 97. 187401-187404. 2006.
 
[17]  Rao C.N.R., Biswas K., Subrahmanyam K.S. and Govindaraj A., “Graphene, the new nanocarbon”, J Mater Chem, 19. 2457-2469. 2009.
 
[18]  Ahlawat A. and Sathe V.G., “Raman study of NiFe2O4 nanoparticles, bulk and films: Effect of laser power”, J Raman Spectrosc, 42. 1087-1094. 2011.
 
[19]  Kreisel J., Lucazeau G. and Vincent H., “Raman Spectra and Vibrational Analysis of BaFe12O19Hexagonal Ferrite”, J Solid State Chem, 137. 127-137. 1998.
 
[20]  Liu S.Q., Xiao B., Feng L.R., Zhou S.S., Chen Z.G., Liu C.B., Chen F., Wu Z.Y., Xu N. and Oh W.C., “Graphene oxide enhances the Fenton-like photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation”, Carbon, 64. 197-206. 2013.
 
[21]  Xie G., Xi P., Liu H., Chen F., Huang L., Shi Y., Hou F., Zeng Z., Shau C. and Wang J., “A facile chemical method to produce superparamagnetic graphene oxide-Fe 3O 4 hybrid composite and its application in the removal of dyes from aqueous solution”, J Mater Chem, 22. 1033-1039. 2012.
 
[22]  Chen G., Sun M., Wei Q., Zhang Y., Zhu B. and Du B., “Ag3PO4/graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water”, J Hazard Mater, 244-245. 86-93. 2013.
 
[23]  Oliveira L.C.A., Rios R.V.R.A., Fabris J.D., Garg V., Sapag K. and Lago R.M., “Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water” Carbon, 40. 2177-2183. 2002.
 
[24]  Özcan A.S., Erdem B. and Özcan A., “Adsorption of Acid Blue 193 from aqueous solutions onto Na - bentonite and DTMA - bentonite”, J. Colloid Interface Sci., 280. 44-54. 2004.
 
[25]  Ferrero F., “Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust”, J Of Hazardous Mater, 142.144-152. 2007.
 
[26]  Lipatova I.M., Makarova L.I. and Yusova A.A., “Adsorption removal of anionic dyes from aqueous solutions by chitosan nanoparticles deposited on the fibrous carrier”, Chemosphere, 212. 1155-1162. 2018.
 
[27]  Sarma G.K., Sengupta S. and Bhattacharyya K.G., “Methylene Blue Adsorption on Natural and Modified Clays”, Sep Sci Technol, 46. 1602-1614. 2011.
 
[28]  Li Y., Du Q., Liu T., Sun J., Wang Y., Wu S., wang Z., Xia Y. and Xia L., “Methylene blue adsorption on graphene oxide/calcium alginate composites”, Carbohydr Polym, 95. 501-507. 2013.
 
[29]  Wu Z., Zhong H., Yuan X., Wang H., Wang L., Chen X., Zeng G. and Wu Y., “Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater”, Water Res, 67. 330-344. 2014.
 
[30]  Chowdhury S., Mishra R., Saha P. and Kushwaha P., “Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk”, Desalination, 265. 159-168. 2011.
 
[31]  Rahchamani J., Mousavi H.Z. and Behzad M., “Adsorption of methyl violet from aqueous solution by polyacrylamide as an adsorbent: Isotherm and kinetic studies”, Desalination, 267. 256-260. 2011.
 
[32]  Shukla A., Zhang Y.H., Dubey P., Margrave J.L. and Shukla S.S., “The role of sawdust in the removal of unwanted materials from water”, J Hazard Mater, 95. 137-152. 2002.
 
[33]  Ho Y.S., “Citation review of Lagergren kinetic rate equation on adsorption reactions”, Scientometrics, 59. 171-177. 2004.
 
[34]  Ho Y.S. and McKay G., “The kinetics of sorption of divalent metal ions onto sphagnum moss peat”, Water Res, 34. 735-742. 2000.
 
[35]  Chien S.H. and Clayton W.R., “Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils”, Soil Sci Soc Am J, 44. 265-268. 1980.
 
[36]  Dawood S. and Sen T.K., “Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design”, Water Res, 46. 1933-1946. 2012.
 
[37]  McKay G., Blair H.S. and Gardner J., “The adsorption of dyes in chitin. III. Intraparticle diffusion processes”, J Appl Polym Sci, 28. 1767-1778. 1983.
 
[38]  Walter J. Weber and J. Carrell Morris., “Kinetics of Adsorption on Carbon from Solution”, J Sanit Eng Div, 89. 31-60. 1963.
 
[39]  Tang H., Zhou W. and Zhang L., “Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels”, J Hazard Mater, 209-210. 218-225. 2012.
 
[40]  Boyd G.E., Adamson A.W. and Myers L.S., “The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. II. Kinetics”, J Am Chem Soc, 69. 2836-2848. 1947.
 
[41]  Chao T.T., Harward M.E. and Fang S.C., “Adsorption and Desorption Phenomena of Sulfate Ions in Soils”, Soil Sci Soc Am J, 26. 234-237. 1962.
 
[42]  Kinniburgh D.G., “General Purpose Adsorption Isotherms”, Environ Sci Technol, 20. 895-904. 1986.
 
[43]  Chowdhury S., Mishra R., Saha P. and Kushwaha P., “Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk”, Desalination, 265. 159-168. 2011.
 
[44]  Weber T.W. and Chakravorti R.K., “Pore and solid diffusion models for fixed-bed adsorbers”, AIChE J, 20. 228-238. 1974.
 
[45]  Hameed B.H., “Equilibrium and kinetic studies of methyl violet sorption by agricultural waste”, J Hazard Mater, 154. 204-212. 2008.
 
[46]  Wu Y., Luo H., Wang H., Wang C., Zhang J. and Zhang Z., “Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide”, J Colloid Interface Sci, 394. 183-191. 2013.
 
[47]  Travis C.C. and Etnier E.L., “A Survey of Sorption Relationships for Reactive Solutes in Soil”, J Environ Qual, 10. 8-17. 1981.
 
[48]  Hutson N.D. and Yang R.T., “Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation”, Adsorption, 3. 189-195. 1997.
 
[49]  Aksoyoglu S., “Sorption of U(VI) on granite”, J Radioanal Nucl Chem Artic, 134. 393-403. 1989.
 
[50]  Hussain S., van Leeuwen J., Chow C., Beecham S., Kamruzzaman M., Wang D., Drikas M. and Aryal R., “Removal of organic contaminants from river and reservoir waters by three different aluminum-based metal salts: Coagulation adsorption and kinetics studies”, Chem Eng J, 225. 394-405. 2013.
 
[51]  Arami M., Yousefi Limaee N. and Mahmoodi N.M., “Investigation on the adsorption capability of egg shell membrane towards model textile dyes”, Chemosphere, 65. 1999-2008. 2006.
 
[52]  Gupta S. and Bhattacharyya K., “Using aqueous kaolinite suspension as a medium for removing phosphate from water”, Adsorpt Sci Technol, 30. 533-547. 2012.
 
[53]  Luo P., Zhao Y., Zhang B., Liu J., Yang Y. and Liu J., “Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes”, Water Res, 44. 1489-1497. 2010.
 
[54]  Tan I.A.W., Ahmad A.L. and Hameed B.H., “Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon”, J Hazard Mater, 164. 473-482. 2009.
 
[55]  Fu J., Chen Z., Wang M., Liu S., Zhang J., Zhang J., Han R. and Xu q., “Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis”, Chem Eng J, 259. 53-61. 2015.
 
[56]  Wu Z., Zhang L., Guan Q., Ning P. and Ye D., “Preparation of α-zirconium phosphate-pillared reduced graphene oxide with increased adsorption towards methylene blue”, Chem Eng J, 258. 77-84. 2014.
 
[57]  Wang Y., Wang W. and Wang A., “Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay”, Chem Eng J, 228. 132-139. 2013.
 
[58]  Liu Y., Wang J., Zheng Y. and Wang A., “Adsorption of methylene blue by kapok fiber treated by sodium chlorite optimized with response surface methodology”, Chem Eng J, 184. 248-255. 2012.
 
[59]  Rachna K., Agarwal A. and Singh N.B., “Preparation and characterization of zinc ferrite—Polyaniline nanocomposite for removal of rhodamine B dye from aqueous solution”, Environ Nanotechnology, Monit Manag, 9. 154-163. 2018.