World Journal of Chemical Education. 2021, 9(3), 68-76
DOI: 10.12691/WJCE-9-3-1
Original Research

Experiment to Teach Multiple Melting Phenomena in Semicrystalline Polymers Using Differential Scanning Calorimetry

Kathy L. Singfield1, and Ashley J. Rowe1

1Department of Chemistry, Saint Mary’s University, Halifax, Canada

Pub. Date: September 03, 2021

Cite this paper

Kathy L. Singfield and Ashley J. Rowe. Experiment to Teach Multiple Melting Phenomena in Semicrystalline Polymers Using Differential Scanning Calorimetry. World Journal of Chemical Education. 2021; 9(3):68-76. doi: 10.12691/WJCE-9-3-1

Abstract

This article describes a laboratory experiment used to investigate the phenomenon of multiple melting in polymers. The experiment is aimed at the level of senior undergraduate chemistry students able to carry out the investigation in a research-style approach, working together in small groups. The experiment highlights characteristic thermal behavioral differences between polymers and small organic molecules. It demonstrates that shifts in observed melting temperature upon heating are typically due to inherent metastability of the polymer system and not to impurities in the sample, for example. Differential scanning calorimetry is used to demonstrate and explore this fundamental yet contemporary subject of polymer melting, using a well-known and commercially available polymer, isotactic polystyrene. Effects of thermal history of the sample, including crystallization temperature and crystallization time, as well as analysis conditions including heating rate, on the melting point of the polymer solid are each investigated. The experiment provides a hands-on example of structure-property relationships in polymer science.

Keywords

polymer, phase transitions, differential scanning calorimetry, isotactic polystyrene, multiple melting, upper-level undergraduate laboratory

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  American Chemical Society, Committee on Professional Training. Undergraduate Professional Education on Chemistry: ACS Guidelines and Evaluations Procedures for Bachelor’s Degree Programs; ACS: Washington, DC, 2015.
 
[2]  Liu. T., Petermann, J., “Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene,” Polymer, 42 (15). 6453-6461. July 2001.
 
[3]  Boon, J., Challa, G., Van Krevelen, D. W., “Crystallization kinetics of isotactic polystyrene. I: Spherulitic growth rate,” J. Polym. Sci. Part A-2 Polm. Phys., 6 (10). 1791-1801. October 1968.
 
[4]  Pelzbauer, Z., Manley, R. St.J. “Multiple Melting in Isotatctic Polystyrene,” J. Polym. Sci. Part A-2 Polm. Phys., 81970, 8 (4). 649-652. April 1970.
 
[5]  Liu, T., Yan, S., Bonnet, M., Lieberwirth, I., Rogausch, K.-D., Petermann, J., “DSC and TEM investigations on multiple melting phenomena in isotactic polystyrene,” J. Mat. Sci., 35 (20). 5047-5055. October 2000.
 
[6]  Liu, T., Petermann, J., He, C., Liu, Z., Chung, T.-S., “Transmission Electron Microscopy Observations on Lamellar Melting of Cold-Crystallized Isotactic Polystyrene,” Macromolecules, 34 (13). 4305-4307. May 2001.
 
[7]  Liu, T., “Melting behavior of isotactic polystyrene revealed by differential scanning calorimetry and transmission electron microscopy,” Eur. Polym. J., 39 (7). 1311-1317. July 2003.
 
[8]  Duan, Y., Zhang, J., Shen, D., Yan, S., “In Situ FTIR Studies on the Cold-Crystallization Process and Multiple Melting Behavior of Isotactic Polystyrene,” Macromolecules, 36 (13). 4874-4879. June 2003.
 
[9]  Xu, H., Cebe, P., “Heat Capacity Study of Isotactic Polystyrene:  Dual Reversible Crystal Melting and Relaxation of Rigid Amorphous Fraction,” Macromolecules, 37 (8). 2797-2806. March 2004.
 
[10]  Minakov, A. A., Mordvintsev, D. A., Tol, R., Schick, C., “Melting and reorganization of the crystalline fraction and relaxation of the rigid amorphous fraction of isotactic polystyrene on fast heating (30,000 K/min),” Therm. Acta, 442 (1). 25-30. March 2006.
 
[11]  Righetti, M. C., Tombari, E., DiLorenzo, M. L., “Crystalline, mobile amorphous and rigid amorphous fractions in isotactic polystyrene,” Eur. Polym. J., 44 (8). 2659-2667. August 2008.
 
[12]  Malanga, M., Isogai, O., Yamada, T., Iwasaki, S., Kuramoto, M., “Historical Overview and Commercialization of Syndiotactic Polystyrene,” In Syndiotactic Polystyrene: Synthesis, Characterization, Processing and Applications; Schellenberg, J., Ed; WILEY, Hoboken, NJ, 2010, pp 3-4.
 
[13]  Cowie, J. M. G., Polymers: Chemistry & Physics of Modern Materials, Intertext Books, Aylesbury, UK, 1973, Chapter 10: The Crystalline State.
 
[14]  Marentette, J. M., Brown, G. R., “Polymer Spherulites I: Birefringence and Morphology,” J. Chem. Educ., 70 (6), 435-439, July 1993.
 
[15]  Marentette, J. M., Brown, G. R., “Polymer Spherulites II: Crystallization Kinetics,” J. Chem. Educ., 70 (7), 539-542, July 1993.
 
[16]  Wunderlich, B. Prog. Polym. Sci. 2003, 28, p.383.
 
[17]  Singfield, K. L.; Brown, G. R., “Multiple melting behavior of poly(epichlorohydrin) enantiomorphs,” J. Mat. Sci. 34, 1323-1331, March 1999.