World Journal of Chemical Education. 2021, 9(4), 190-196
DOI: 10.12691/WJCE-9-4-12
Special Issue

Hydrogen Evolution Reaction with Sunlight for School Chemistry Education

Malte Petersen1, Paul Worliczek1, Johannes B. Max2, Afshin Nabiyan2, Manuel Wejner1, Jonas Eichhorn2, Carsten Streb3, Felix H. Schacher2 and Timm Wilke1,

1Chemistry Didactics, Friedrich Schiller University Jena, Germany

2Institute for Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Germany

3Institute of Inorganic Chemistry I, Ulm University, Germany

Pub. Date: November 28, 2021
(This article belongs to the Special Issue Photoprocesses in Chemical Education)

Cite this paper

Malte Petersen, Paul Worliczek, Johannes B. Max, Afshin Nabiyan, Manuel Wejner, Jonas Eichhorn, Carsten Streb, Felix H. Schacher and Timm Wilke. Hydrogen Evolution Reaction with Sunlight for School Chemistry Education. World Journal of Chemical Education. 2021; 9(4):190-196. doi: 10.12691/WJCE-9-4-12

Abstract

In current research, molecular light-driven catalytic units are linked to hierarchically structured soft matter matrices and used to convert solar radiation into chemical reactivity for photocatalytic water splitting. This article describes the development of a simplified hydrogen evolution reaction that transfers selected results to the student laboratory in a phenomenon-oriented manner. For this purpose, a photocatalytically active system - consisting of the catalyst titanium dioxide, the dye Eosin Y and the electron donor triethanolamine - is combined with two polymers as suitable matrices. A newly developed, low-cost hydrogen detector is used to quantify the hydrogen concentration.

Keywords

photocatalysis, hydrogen evolution reaction, photochemistry, low-cost detection, water splitting

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Behle, J., Lühken, A. Wandfarbe gegen dicke Luft? NiU-Chemie 2015, 21 (150), 27-31.
 
[2]  Artelt, K., Kutteroff, F., Wilke, T., Waitz, T., Habekost, A. Von der Bisphenol-A-Problematik zur Photokatalyse:Ein Vorschlag zur Einführung photokatalytischer Reaktionen an Titandioxid im Chemieunterricht. Praxis der Naturwissenschaften Chemie 2015, 64 (1), 25-28.
 
[3]  Tausch, M. Chemie mit Licht:Innovative Didaktik für Studium und Unterricht, [1. Auflage]; Moremedia; Springer Spektrum, 2019.
 
[4]  Banerji, A., Schönbein, A.-K., Wolff, J. OLED Reloaded: Die Synthese des Halbleiterpolymers MEH-PPV als Schulversuch. CHEMKON 2017, 24 (4), 251-256.
 
[5]  Wilke, T., Waitz, S., von Hoff, E., Waitz, T. Farbig fluoreszierende Zinkoxid-Nanopartikel. CHEMKON 2018, 25 (1), 16-22.
 
[6]  Roberts, C. A., Allen, S., Helmy, S. Using Donor–Acceptor Stenhouse Adducts to Teach Photochromism in the Undergraduate Laboratory. J. Chem. Educ. 2021, 98 (5), 1736-1740.
 
[7]  Kremer, R., Bohrmann-Linde, C., Tausch, M. W. Artificial photosynthesis-hydrogen production in a one-pot-cell. CHEMKON 2021.
 
[8]  Lanfermann, P., Weidmann, C., Dege, J., Celik, S., Maaß, M. C., Waitz, T. Experimental Approach for Efficiency Determination of Photocatalytic Hydrogen Evolution. W. J. Chem. Educ. 2021, submitted.
 
[9]  https://www.catalight.eu/(accessed 2021-09-29).
 
[10]  Fujishima, A., Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238 (5358), 37-38.
 
[11]  Nonninger, R., Dege, J., Wilke, T., Waitz, T. Nanoscience Education in School Chemistry:Perspectives for Curricular Innovations in Context of an Education for a Sustainable Development. In Global Perspectives of Nanoscience and Engineering Education; Winkelmann, K., Bhushan, B., Eds.; Springer International Publishing, 2016; pp 237-274.
 
[12]  Parchmann, I., Schwarzer, S., Wilke, T., Tausch, M., Waitz, T. Von Innovationen der Chemie zu innovativen Lernanlässen für den Chemieunterricht und darüber hinaus. CHEMKON 2017, 24 (4), 161-164.
 
[13]  Tausch, M. W. Curriculare Innovationsforschung in der Chemiedidaktik. PdN-ChiS 2013, 62 (4), 38.
 
[14]  Duit, R., Gropengießer, H., Kattmann, U., Komorek, M., Parchmann, I. The model of educational reconstruction:A framework for improving teaching and learning science. In Science education research and practice in Europe: retrospective and prospective; Sense Publ, 2012; pp 13-37.
 
[15]  Saadat, R., Bartram, B., Wilke, T. Made to measure: Easy Synthesis and Characterization of Nanocomposites with Tailored Functionalities for Chemistry Education. WJCE 2019, 7 (2), 65-71.
 
[16]  Costabel, D., Skabeev, A., Nabiyan, A., Luo, Y., Max, J. B., Rajagopal, A., Kowalczyk, D., Dietzek, B., Wächtler, M., Görls, H., Ziegenbalg, D., Zagranyarski, Y., Streb, C., Schacher, F. H., Peneva, K. 1,7,9,10-Tetrasubstituted PMIs Accessible through Decarboxylative Bromination: Synthesis, Characterization, Photophysical Studies, and Hydrogen Evolution Catalysis. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27 (12), 4081-4088.
 
[17]  Luo, Y., Maloul, S., Schönweiz, S., Wächtler, M., Streb, C., Dietzek, B. Yield-not only Lifetime-of the Photoinduced Charge-Separated State in Iridium Complex-Polyoxometalate Dyads Impact Their Hydrogen Evolution Reactivity. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26 (36), 8045-8052.
 
[18]  Romanenko, I., Rajagopal, A., Neumann, C., Turchanin, A., Streb, C., Schacher, F. H. Embedding molecular photosensitizers and catalysts in nanoporous block copolymer membranes for visible-light driven hydrogen evolution. J. Mater. Chem. A 2020, 8 (13), 6238-6244.
 
[19]  Nabiyan, A., Max, J. B., Neumann, C., Heiland, M., Turchanin, A., Streb, C., Schacher, F. H. Polyampholytic Graft Copolymers as Matrix for TiO2 /Eosin Y/Mo3 S13 2- Hybrid Materials and Light-Driven Catalysis. Catalysis. Chem. Eur. J. 2021.
 
[20]  Max, J. B., Nabiyan, A., Eichhorn, J., Schacher, F. H. Triple-Responsive Polyampholytic Graft Copolymers as Smart Sensors with Varying Output. Macromolecular rapid communications 2021, 42 (7), e2000671.
 
[21]  Ducci, M. Der fluoreszierende Springbrunnen. Nachr. Chem. 2018, 66 (4), 434-436.
 
[22]  Fachstellen für Energie und Umwelt der Kantone Bern, Freiburg, Genf, Jura, Neuenburg, Waadt und Wallis. Das Lichtspektrum der Glühlampen. https://www.energie-umwelt.ch/definitionen/1384-das-lichtspektrum-der-gluehlampen.
 
[23]  Kirch, M., Lehn, J., Sauvage, J. Helv. Chim. Acta 1979 (62), 1345-1384.
 
[24]  Wejner, M., Wilke, T. Low Cost – High Tech: The Digital Measurement System LabPi. CHEMKON 2019, 26 (7), 294-300.
 
[25]  Joy IT. Hydrogen Sensor MQ 8 Manual. https://joy-it.net/files/files/Produkte/SEN-MQ8/SEN-MQ8-Manual-20200212.pdf (accessed 2021-09-29).
 
[26]  Wilke, T., Haffer, S., Weinberger, C., Tiemann, M., Wagner, T., Waitz, T. Nanoporous Materials: Synthesis Concepts and Model Experiments for School Chemistry Education. J Nano Educ 2014, 6 (2), 117-123.
 
[27]  Sandbox Electronics. MQ-8 Hydrogen/H2 Sensor Module. http://sandboxelectronics.com/?p=196 (accessed 2021-09-29).
 
[28]  Bohrmann-Linde, C., Tausch, M. Sustainable chemistry with light - experimental approaches via digital media. CHEMKON 2021, 28 (4), 147-154.