World Journal of Chemical Education. 2021, 9(4), 111-120
DOI: 10.12691/WJCE-9-4-3
Special Issue

Hydrogen Goes Green - Model Experiments for Artificial Photosynthesis

Richard Kremer1 and Michael W. Tausch1,

1Didaktik der Chemie, Bergische Universität Wuppertal, 42119 Wuppertal, Germany

Pub. Date: November 28, 2021
(This article belongs to the Special Issue Photoprocesses in Chemical Education)

Cite this paper

Richard Kremer and Michael W. Tausch. Hydrogen Goes Green - Model Experiments for Artificial Photosynthesis. World Journal of Chemical Education. 2021; 9(4):111-120. doi: 10.12691/WJCE-9-4-3

Abstract

Photocatalytic hydrogen production without the bypass via photovoltaics and electrolysis has been realized using a versatile photocatalytic system with only three components: the redox mediator ethyl viologen, the photocatalyst proflavin and the sacrificial donor EDTA. By adding a reduction catalyst made of nano-platinum on alumina to the aqueous solution of these three chemicals, hydrogen can be produced by irradiation with sunlight.

Keywords

photocatalyst, redox mediator, sacrificial donor, reduction catalyst, energy conversion, energy carrier, artificial photosynthesis, sustainable development goals SDGs

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  M. W. Tausch. “Photoactive Thin Films in Science Education”, World J. Chem. Educ., 6, 14-17 (2018).
 
[2]  M. W. Tausch. “Photo-Blue-Bottle Modellversuche zur Photosynthese und zur Atmung“ PdN -Chemie, 43, 13-8 (1994).
 
[3]  S. Korn, M. W. Tausch. “A Laboratory Simulation for Coupled Cycles of Photosynthesis and Respiration”, J. Chem. Educ., 78, 1238-1240 (2001).
 
[4]  C. Bohrmann-Linde, M. W. Tausch, F. Posala, D. Nietz. “Akku leer? Licht an!”, PdN-Chemie, 63(5), 25-31 (2013).
 
[5]  M. W. Tausch, M. Heffen: “Photosynthese und Atmung en miniature”, Chemie & Schule 31 (3), 5-11 (2016).
 
[6]  R. Brunnert, Y. Yurdanur, M. W. Tausch. “Towards Artificial Photosynthesis in Science Education” World J. Chem. Educ., 7, 33-39 (2019).
 
[7]  R. Kremer, C. Bohrmann-Linde, M. W. Tausch. “Artificial Photosynthesis in Chemical Education“, Educ. Quimica, 32 (3), 144-156 (2021).
 
[8]  Y. Yurdanur, M. W. Tausch. “Metamorphoses of an Experiment”, CHEMKON, 26 (3), 125-129 (2019).
 
[9]  N. J. Turro, “Modern Molecular Photochemistry”, Benjamin/Cummings, New York, 1978.
 
[10]  W. W. Porter, T. P. Vaid. “Isolation and Characterization of Phenyl Viologen as a Radical Cation and Neutral Molecule”, J. Org. Chem. 70, 5028-5035 (2005).
 
[11]  Y. I. Orimoto, K. Y. Aoki, Y. (2018). “Role of Pyridinium Groups and Iodide Ions in Photoelectrochromism in Viologen-Based Ion-Pair Charge-Transfer Complexes: Molecular Orbital Analysis” J. Phys. Chem. C, 122, 4546-4556 (2018).
 
[12]  P. M. S. Monk. “The Viologens. Physicochemical Properties, Synthesis and Applications of the Salts of 4,4’-Bipyridine”, Chichester, Wiley (1998).
 
[13]  P. M. S. Monk, R. Mortimer, D. Rossinsky. “Electrochromism and Electrochromic Devices”. Cambridge, Cambridge UP (2007).
 
[14]  K. Kalyanasundaram, M. Grätzel. “Proflavin-sensitized Photoproduction of H2, from Water with Electron -donors and a Colloidal Redox Catalyst”, J. Chem. Soc. Chem. Comm., 1137-1138 (1979).
 
[15]  K. Kalyanasundaram, D. Dung. “Role of proflavin as a photosensitizer for the light-induced hydrogen evolution from water”, J. Phys. Chem., 84, (20) 2551-2556 (1980).
 
[16]  B. König, Photochemical Catalysis, De Gruether, Berlin 2nd edition 2020.
 
[17]  C. L. Bird, A. T. Kuhn. “Electrochemistry of the Viologens”, Chemical Society Reviews, 10, 49-82 (1981).
 
[18]  C. Bohrmann-Linde, M. W. Tausch. “Photogalvanic Cells for Classroom Investigations: A Contribution for Ongoing Curriculum Modernization”, J. Chem. Educ., 80, 1471-1473 (2003).
 
[19]  C. Bohrmann-Linde, D. Zeller. “Photosensitizers for Photogalvanic Cells in the Chemistry Classroom” World J. Chem. Educ., 6, 36-42 (2018).
 
[20]  M. Beller, N. Lewis, M. Grätzel, A. Hagfeld, R. Rieger et al.. “Artificial photosynthesis, scientific and technical challenges and perspectives”, German Academy of Science and Engineering, Munich (2018).
 
[21]  S. Protti, A. Albini, N. Serpone. “Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature”, Phys. Chem. Chem. Phys., 16, 19790-19827 (2014).
 
[22]  Yue Zhao, Chunmei Ding, Jian Zhu, Wei Qin, Xiaoping Tao, Fengtao Fan, Rengui Li, Can Li. “A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts”, Angew. Chem. Int. Ed., 59, 9653-9658 (2020)
 
[23]  Shuang Cao, Lingyu Piao. “Considerations for a More Accurate Evaluation Method for Photocatalytic Water Splitting”, Angew. Chem. 132, 18468-18476 (2020).
 
[24]  J. Warnan, E. Reisner. “Synthetic Organic Design for Solar Fuel Systems” Angew. Chem. 132, 17496-17506 (2020).
 
[25]  R. Sen, A. Goeppert, S. Kar, G. K. S. Prakash: (2020). “Hydroxide Based Integrated CO2 Capture from Air and Conversion to Methanol”, J. Amer. Chem. Soc. 142, 4544-4549 (2020).
 
[26]  Yiou Wang, R. Godin, J. R. Durrant, Junwang Tang:. “Efficient Hole Trapping in Carbon Dot/Oxygen-Modified Carbon Nitride Heterojunction Photocatalysts for Enhanced Methanol Production from CO2 under Neutral Conditions”, Angew. Chem. 133, 2-8 (2021)
 
[27]  M. Bellardita, V. Loddo, F. Parrino, L. Palmisano. “(Photo)electrocatalytic Versus Heterogeneous Photocatalytic Carbon Dioxide Reduction”, ChemPhotoChem 5, 1-26 (2021)
 
[28]  United Nations. “Agenda 2030“, https://sdgs.un.org/goals
 
[29]  M. W. Tausch, N. Meuter, C. Bohrmann-Linde et al.. “Chemistry with Light”. https://chemiemitlicht.uni-wuppertal.de/en.html.
 
[30]  Y. Gökkus, M. W. Tausch. “Explorative Study for Participating and Use-Inspired Research in Chemical Education”, CHEMKON, 28 (2021).