World Journal of Chemical Education. 2021, 9(4), 130-135
DOI: 10.12691/WJCE-9-4-5
Special Issue

Photoreforming of Biomass - Producing Hydrogen from Sugar

Julian Venzlaff1 and Claudia Bohrmann-Linde1,

1Department of Chemistry Education, University of Wuppertal, Wuppertal, Germany

Pub. Date: November 28, 2021
(This article belongs to the Special Issue Photoprocesses in Chemical Education)

Cite this paper

Julian Venzlaff and Claudia Bohrmann-Linde. Photoreforming of Biomass - Producing Hydrogen from Sugar. World Journal of Chemical Education. 2021; 9(4):130-135. doi: 10.12691/WJCE-9-4-5

Abstract

The future hunger for hydrogen in industry or for private cars will demand a growing production rate and will have to meet the requirements of sustainability. Photoreforming biomass to produce green hydrogen seems to be a promising way for fulfilling sustainable industrial processes. In this article the photoreforming of sugars is used as an example to implement this subject in science classes. For educational purposes an experiment is presented that demonstrates the photoreforming of a glucose solution with a TiO2/Pt-photocatalyst. The developed gas can be examined by gas chromatography or a detonating gas test. The aim of implementing this subject in school is to pick out an innovative way of producing (green) hydrogen. Photoreforming of biomass is also a suitable context to discuss and evaluate social, environmental and economical perspectives for sustainable energy resources and industrial processes in the chemistry classroom. Students can discuss different ways of how to reach the sustainable development goals presented by the United Nations in 2015 and learn to deal with contradictions by reaching these goals. This subject is therefore ideal for integrating education for sustainable development (ESD) in school education.

Keywords

photoreforming, hydrogen, sugar, sustainability, ESD

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238, 37-38, July1972.
 
[2]  Kawai, T., Sakata, T., “Conversion of carbohydrate into hydrogen by a photocatalytic process,” Nature, 286, 474-476, July1980.
 
[3]  Rossetti, I. “Hydrogen Production by Photoreforming of Renewable Substrates,” International Scholarly Research Notices, Chemical Engineering, 2012 (3-4), 1-21.
 
[4]  Christoforidis, K., Fornasiero, P., “Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply,” ChemCatChem, 9 (9), 1523-1544, May2017.
 
[5]  Kuehnel, M., Reisner, E., “Solar hydrogen generation from lignocellulose,” Angewandte Chemie, International Edition, 57 (13), 3290-3296, March2018.
 
[6]  Chong, R., Li, J., Ma, Y., Zhang, B., Han, H., Li, C., “Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts,” Journal of Catalysis, 314, 101-108, May2014.
 
[7]  United Nations, “Transforming our world: the 2030 Agenda for Sustainable Development,” 2015. Available: https://sdgs.un.org/2030agenda. [25.08.2021].
 
[8]  UNESCO, “Framework for the implementation of education for sustainable development (ESD) beyond 2019,” 2019. Available: https://www.unesco.de/sites/default/files/2020-04/40%20C%2023%20ESD.pdf. [25.08.2021].
 
[9]  Lorenz, S., “Unsicherheit, Reflexivität und Prozeduralität. Zur Empirie und Methodik von Kompetenzkriterien in der Bildung für nachhaltige Entwicklung,” in Kompetenzen der Bildung für nachhaltige Entwicklung. Operationalisierung, Messung, Rahmenbedingungen, Befunde, Bormann, I. & de Haan, G. Ed., Springer, Wiesbaden, 2008, 123-140.
 
[10]  De Haan, G., “Gestaltungskompetenz als Kompetenzkonzept der Bildung für nachhaltige Entwicklung,” in Kompetenzen der Bildung für nachhaltige Entwicklung. Operationalisierung, Messung, Rahmenbedingungen, Befunde, Bormann, I. & de Haan, G. Ed., Springer, Wiesbaden, 2008, 23-44.
 
[11]  Uekert, T., Dorchies, F., Pichler, C., Reisner, E., “Photoreforming of food waste into value-added products over visible-light-absorbing catalyst,” Green Chemistry, 22 (10), 3262-3271, May2020.