World Journal of Chemical Education. 2021, 9(4), 152-162
DOI: 10.12691/WJCE-9-4-8
Special Issue

Rapid and Sensitive Electrochemical, Spectroscopic and Spectroelectrochemical Detection of Glyphosate and Glufosinate and Their Copper Salts with Screen-printed Electrodes

F. Wetzel1, T. Braun1, T. Schindler1 and A. Habekost1,

1Department of Chemistry, University of Education Ludwigsburg, Reuteallee 46, 71634 Ludwigsburg, Germany

Pub. Date: November 28, 2021
(This article belongs to the Special Issue Photoprocesses in Chemical Education)

Cite this paper

F. Wetzel, T. Braun, T. Schindler and A. Habekost. Rapid and Sensitive Electrochemical, Spectroscopic and Spectroelectrochemical Detection of Glyphosate and Glufosinate and Their Copper Salts with Screen-printed Electrodes. World Journal of Chemical Education. 2021; 9(4):152-162. doi: 10.12691/WJCE-9-4-8

Abstract

N-(Phosphonomethyl)glycine (glyphosate), known by the trade name Roundup®, is a broad-spectrum systemic herbicide used to kill various types of weeds. It was first synthesized in 1970 by John E. Franz, a chemist at the Monsanto agrochemical company. Glyphosate's mode of action is to inhibit a plant enzyme involved in the synthesis of some aromatic amino acids (“shikimate way”). The use of Roundup® is currently controversial, as its hazard potential has not been clarified. Glufosinate (2-Amino-4-[hydroxy(methylphosphonoyl)] butanoic acid) was discovered by German and Japanese scientists in a biological process: Species of Streptomyces bacteria produce a tripeptide that consists of two alanine residues and an amino acid that is an analogue of glutamate named phosphinothricin. Phosphinothricin was first synthesized by scientists at Hoechst (now Aventis) in the 1970s as a racemic mixture; this racemic mixture is called glufosinate. This article presents reliable and easily performed spectroscopic and (spectro)electrochemical measurements for identifying glyphosate and glufosinate.

Keywords

electrogenerated chemiluminescence, screen-printed electrodes, nano-ZnO decorated screen-printed electrodes, derivatization

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  L. Mamy, E. Barriuso, G. Benoit, Glyphosate fate in soils when arriving in plant residues, Chemosphere 154 (2016) 425-433.
 
[2]  V.C. Aparicio, E. De Geronimo, D. Marino, J. Primost, P. Carriquiriborde, J.L. Costa, Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins, Chemosphere 93 (2013) 1866-1873.
 
[3]  P. Sprankle, W.F. Meggitt, D. Penner, Adsorption, mobility, and microbial degradation of glyphosate in the soil, Weed Sci. 23 (1975) 229-234.
 
[4]  S. Chen, Y. Liu, Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst, Chemosphere 67 (2007) 1010-1017.
 
[5]  C. Lesueur, M. Pfeffer, M. Fuerhacker, Photodegradation of phosphonates in water, Chemosphere 59 (2005) 685-691.
 
[6]  H. Roseboom, C.J. Berkhoff, Determination of the herbicide glyphosate and its major metabolite aminomethylphosphonic acid by high-performance liquid chromatography after fluorescence labeling, Anal. Chim. Acta 135 (1982) 373-737.
 
[7]  H.A. Powell, N.W. Kerby, P. Rowell, High-performance liquid chromatographic determination of the herbicide glyphosate and its metabolite (aminomethyl) phosphonic acid and their extraction from cyanobacteria, J. Chromatogr. 502 (1990) 201-207.
 
[8]  M.T.H. Ragab, Thin-layer chromatographic detection of glyphosate herbicide (N- phosphonomethyl glycine) and its aminomethyl phosphonic acid metabolite, Chemosphere 7 (1978) 143-153.
 
[9]  S. Pintado, R.R. Amaro, M. Mayen, J.M.R. Mellado, Electrochemical determination of the glyphosate metabolite aminomethylphosphonic acid (GUFOSINATE) in drinking water with an electrodeposited copper electrode, Int. J. Electrochem. Sci. 7 (2012) 305-312.
 
[10]  https://de.wikipedia.org/wiki/Roundup.
 
[11]  H-Y Chuang, T-P Hong, C-W Whang, A simple and rapid screening method for glyphosate in water using flow-injection with electrochemiluminescence detection, Anal. Methods 5 (2013) 6186-6191.
 
[12]  https://www.dw.com/de/bundesregierung-billigt-insektenschutz-gesetz-und-glyphosat-verbot/a-56525242.
 
[13]  U. Merkel, G.-W. Rathke, C. Schuster, K. Warnstorff, W. Diepenbrock Use of glufosinate-ammonium to control cruciferous weedspecies in glufosinate-resistant winter oilseed rape, Field Crops Research 85 (2004) 237-249.
 
[14]  E. Börjesson, L. Torstensson, New methods for determination of glyphosate and (aminomethyl) phosphonic acid in water and soil, J. Chromatogr. 886 (2000) 207-216.
 
[15]  C.L. Deyrup, S.M. Chang, R.A. Weitraub, H.A. Moye, Simultaneous esterification and acylation of pesticides for analysis by gas chromatography. 1. Derivatization of glyphosate and (aminomethly)phosphonic acid with fluorinated alcohols per- fluorinated anhydrides, J. Agric. Food Chem. 33 (1985) 944-947.
 
[16]  A. Habekost, Spectroscopic and Electrochemical Investigations of N-(Phosphonomethyl)glycine and (Aminomethyl)phosphonic Acid (AMPA), World J. Chem. Educ. 3 (2015) 134-140.
 
[17]  S. de Miranda Colombo, J.C. Masini, Developing a fluorimetric sequential injection methodology to study adsorption/desorption of glyphosate on soil and sediment samples, Microchem. Acta 98 (2011) 260-266.
 
[18]  S. Kodama, Y. Ito, A. Taga, Y. Nomura, A. Yamamoto, S. Chinaka, K. Suzuki, T. Yamashita, T. Kemmei, K. Hayakawa, A fast and simple analysis of glyphosate in tea beverage by capillary electrophoresis with on-line copper (II)-glyphosate complex formation, J. Health Sci. 54 (2008) 602-606.
 
[19]  P.G. Daniele, C. De Stefano, E. Prenesti, S. Sammartano, Copper (II) complexes of N-(phosphonomethyl)glycine in aqueous solution: a thermodynamic and spectro- photometric study, Talanta 45 (1997) 425-431.
 
[20]  E. Sierra, M.A. Mendez, V.M. Sarria, M.T. Cortes, Electrooxidatión de glifosatoso-breelectrodos de níquel y cobre, Quim. Nova 31 (2008) 220-226.
 
[21]  S. Bozorgzadeh, B. Haghighi, Enhanced electrochemiluminescence of ZnO nano- particles decorated on multiwalled carbon nanotubes in the presence of perox- ydisulfate, Microchim. Acta 183 (2016) 1487-1492.
 
[22]  S. Bozorgzadeh, B. Haghighi, L. Gorton, Fabrication of a highly efficient solid state electrochemiluminescence sensor using Ru(bpy) 2+ incorporated nanoZnO- MWCNTs-Nafion composite film, Electrochim. Acta 164 (2015) 211-217.
 
[23]  A.L. Valle, F.C.C. Mello, R.P. Alves-Balvedi, L. P. Rodrigues, L. R. Goulart, Glyphosate detection: methods, needs and challenges, Environmental Chemistry Letters 17 (2019) 291-317.
 
[24]  A.J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, Marcel Dekker, New York, 2000.
 
[25]  A.A. Shaikh, J. Fitdaws, S. Badrunnessa, S. Serajee, M.S. Rahmen, P.K. Bakshi, Electrochemical Studies of the pH Dependence of Cu(II) Reduction in Aqueous Britton-Robinson Buffer Solution, Int. J. Electrochem. Sci. 6 (2011), 2333-2343.
 
[26]  C.F.B. Coutinho, M.O. Silva, S.A.S. Machado, L.H. Mazo, Influence of glyphosate on the copper dissolution in phosphate buffer, Applied Surface Science 253 (2007) 3270-3275.
 
[27]  M.M. Richter, Electrochemiluminescence (ECL), Chem. Rev. 104 (2004) 3003-3036.
 
[28]  S. Parveen, M.S. Aslam, L. Hu, G. Xu, Electrogenerated Chemiluminescence. Protocols and Applications, Springer, Heidelberg, Germany, 2013.
 
[29]  A. Habekost, Investigations of some reliable electrochemiluminescence systems on the basis of tris(bipyridyl)ruthenium(II) for HPLC analysis, World J. Chem. Educ. 4 (2016) 13-20.
 
[30]  W. Miao, J.P. Choi, A.J. Bard, Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), [Ru(bpy) 2+]/Tri-n-propylamine (TPrA) system revisited - a new route involving TPrA•+ cation radicals, J. Am. Chem. Soc. 124 (2002) 14478-14485.
 
[31]  R.M. Wightman, S.P. Forry, R. Maus, D. Badocco, P. Pastore, Rate-determining step in the electrogenerated chemiluminescence from tertiary amines with tris(2,2′- bipyridine)ruthenium(II), J. Phys. Chem. B 108 (2004) 19119-19125.
 
[32]  W. Jackson, D.R. Bobbitt, Chemiluminescence detection of amino acids using in situ generation Ru(bpy) 3+, Anal. Chim. Acta 285 (1994) 309-320.
 
[33]  S.N. Brune, D.R. Bobbitt, Role of electron-donating/withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris(2,2′-bipyridine) ruthenium(II) with amino acids, Anal. Chem. 64 (1992) 166-170.
 
[34]  D.R. Skotty, W.Y. Lee, T.A. Nieman, Determination of dansyl amino acids and oxalate by HPLC with electrogenerated chemiluminescence detection using tris(2,2’-bipyridyl)ruthenium (II) in the mobile phase, Anal. Chem. 68 (1996) 1530-1535.
 
[35]  W.Y. Lee, T.A. Nieman, Determination of dansyl amino acids using tris(2,2′- bipyridyl)ruthenium (II) chemiluminescence for post column reaction detection in high-performance liquid chromatography, J. Chromatogr. A 659 (1994) 111-118.
 
[36]  J.A. Holeman, N.D. Danielson, Chemiluminescence reaction of thiazide compounds with tris(2,2′-bipyridine)ruthenium(III), Anal. Chim. Acta 277 (1993) 55-60.
 
[37]  J.A. Holeman, N.D. Danielson, Liquid chromatography of antihistamines using post-column tris(2,2′-bipyridine) ruthenium(III) chemiluminescence detection, J. Chromatogr. A 679 (1994) 277-284.
 
[38]  G.M. Greenway, A.W. Knight, P.J. Knight, Electrogenerated chemiluminescent determination of codeine and related alkaloids and pharmaceuticals with tris(2,2′- bipyridine)ruthenium(II), Analyst 120 (1995) 2549-2552.
 
[39]  G.M. Greenway, P.J. Knight, Determination of oxprenolol by electrogenerated chemiluminescence, Anal. Proc. 32 (1995) 251-253.
 
[40]  R.D. Gerardi, N.W. Barnett, S.W. Lewis, Analytical applications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent, Anal. Chim. Acta 378 (1999) 1-43.
 
[41]  K.A. Fähnrich, M. Pravda, G.G. Guilbault, Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta 54 (2001) 531-559.
 
[42]  J.S. Ridlen, G.J. Klopf, T.A. Nieman, Determination of glyphosate and related compounds using HPLC with tris(2,2′-bipyridine)ruthenium(II) electrogenerated chemiluminescence detection, Anal. Chim. Acta 341 (1997) 195-204.
 
[43]  J.L. Adock, N.W. Barnett, R.D. Gerardi, C.E. Lenehan, S.W. Lewis, Determination of glyphosate mono-isopropylamine salt in process samples using flow injection analysis with tris(2,2′-bipyridine)ruthenium(II) chemiluminescence detection, Talanta 64 (2004) 534-537.
 
[44]  A. Habekost, Fundamentals and Applications of Electrochemical Impedance Spectroscopy - A Didactic Perspective, World J. Chem. Educ. 9 (2021), 14-21.
 
[45]  A. Habekost, Spectroscopic and Electrochemical Investigations of N-(Phosphonomethyl)glycine (glyphosate) and (Aminomethyl)phosphonic Acid (AMPA), World J. Chem. Educ. 3 (2015) 134-140.
 
[46]  M.R. Jan, J. Shah, M. Muhammad, B. Ara, Glyphosate herbicide residue determination in samples of environmental importance using spectrophotometric method. J. Hazard Mater. 169 (2009) 742-745.
 
[47]  S.Y. Chang, C-H. Liao, Analysis of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with indirect fluorescence detection, Journal of Chromatography A, 959 (2002) 2309-315.
 
[48]  L. Besagarahally, L. Bhaskare, P. Nagaraja, Direct sensitive Spectrophotometric Determination of Glyphosate by Using Ninhydrin as a Chromogenic Reagent in Formulations and Environmental water Samples, Helvetica Chemica Acta, 89 (2006) 2686-2693.
 
[49]  T. Undabeytia, E. Morillo, C. Maqueda, FTIR Study of Glyphosate-Copper Complexes, J. Agricult. Food Chem., 50 (2002), 1918-1921.
 
[50]  J. Sheals, P. Persoon, B. Hedman, IR and EXAFS spectroscopic studies of glyphosate protonantion and copper (II) complexes of glyphosate an aqueous solution, Inorg. Chem, 40 (2001) 4302-4309.
 
[51]  J. Sheals, M. Granström, S. Sjöberg, P. Persson, Coadsorption of Cu(II) and glyphosate at the water-goethite (α-FEOOH) interface: molecular structures from FTIR and EXAFS measurements, J. Colloid and Interface Science 262 (2003) 38-47.